Math189R SU17
Homework 2
Monday, May 22, 2017

Feel free to work with other students, but make sure you write up the homework and
code on your own (no copying homework or code; no pair programming). Feel free to
ask students or instructors for help debugging code or whatever else, though.

The starter files can be found under the Resource tab on course website. The graphs for
problem 3 generated by the sample solution could be found in the corresponding zipfile.
These graphs only serve as references to your implementation. You should generate your
own graphs for submission. Please print out all the graphs generated by your own code
and submit them together with the written part, and make sure you upload the code to
your Github repository.

1 (Murphy 8.3) Gradient and Hessian of the log-likelihood for logistic regression.
(a) Leto(x) = 1;7 be the sigmoid function. Show that

o (x) = o(x) [1 - o(x)].

(b) Using the previous result and the chain rule of calculus, derive an expression for the
gradient of the log likelihood for logistic regression.

(c) The Hessian can be written as H = X' SX where S = diag(u1(1 — u1),..., pn(1 —
jin)). Derive this and show that H = 0 (A > 0 means that A is positive semidefinite).

Hint: Use the negative log-likelihood of logistic regression for this problem.




2 (Murphy 2.11) Derive the normalization constant (Z) for a one dimensional zero-
mean Gaussian
P(x;0%) = lex —x—z
)T 7O T2

such that P(x; 0?) becomes a valid density.




3 (regression). In this problem, we will use the online news popularity dataset to set
up a model for linear regression. In the starter code, we have already parsed the data
for you. However, you might need internet connection to access the data and therefore
successfully run the starter code.

We split the csv file into a training and test set with the first two thirds of the
data in the training set and the rest for testing. Of the testing data, we split the first half
into a ‘validation set” (used to optimize hyperparameters while leaving your testing
data pristine) and the remaining half as your test set. We will use this data for the
remainder of the problem. The goal of this data is to predict the log number of shares a
news article will have given the other features.

(a) (math) Show that the maximum a posteriori problem for linear regression with a
zero-mean Gaussian prior P(w) = [T; V(w;]0, 7%) on the weights,

N D
argmax y_ log NV (y;|wy + w ' x;,0%) + Y log N (w;]0, 72)
= =1

is equivalent to the ridge regression problem

N

argminﬁ Y (yi — (wo + wx;))? + Al|w|[3
i=1

with A = ¢2/12.
(b) (math) Find a closed form solution x* to the ridge regression problem:
minimize: ||Ax — b|[5 + ||Tx|[3.

(c) (implementation) Attempt to predict the log shares using ridge regression from the
previous problem solution. Make sure you include a bias term and don't reqularize
the bias term. Find the optimal regularization parameter A from the validation
set. Plot both A versus the validation RMSE (you should have tried at least 150
parameter settings randomly chosen between 0.0 and 150.0 because the dataset is
small) and A versus ||0*||, where 0 is your weight vector. What is the final RMSE
on the test set with the optimal A*?

(continued on the following pages)




3 (continued)

(d) (math) Consider regularized linear regression where we pull the basis term out of
the feature vectors. That is, instead of computing ¥ = 8" x with xy = 1, we compute
¥ = 8" x + b. This corresponds to solving the optimization problem

minimize: ||Ax + b1 — y]||3 + ||Tx| 3.

Solve for the optimal x* explicitly. Use this close form to compute the bias term for
the previous problem (with the same regularization strategy). Make sure it is the
same.

(e) (implementation) We can also compute the solution to the least squares problem
using gradient descent. Consider the same bias-relocated objective

minimize: f = ||Ax + b1 —y]||3 + ||Tx| 3.

Compute the gradients and run gradient descent. Plot the ¢, norm between the
optimal (x*,b*) vector you computed in closed form and the iterates generated by
gradient descent. Hint: your plot should move down and to the left and approach
zero as the number of iterations increases. If it doesn’t, try decreasing the learning
rate.




