Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.
(a) Prove that

$$
\left\|\mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right\|^{2}=\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}
$$

Hint: first consider the case when $k=2$. Use the fact that $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}$ is 1 if $i=j$ and 0 otherwise. Recall that $z_{i j}=\mathbf{x}_{i}^{\top} \mathbf{v}_{j}$.
(b) Now show that

$$
J_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \lambda_{j} .
$$

Hint: recall that $\mathbf{v}_{j}^{\top} \boldsymbol{\Sigma} \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}^{\top} \mathbf{v}_{j}=\lambda_{j}$.
(c) If $k=d$ there is no truncation, so $J_{d}=0$. Use this to show that the error from only using $k<d$ terms is given by

$$
J_{k}=\sum_{j=k+1}^{d} \lambda_{j}
$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_{j}$ into $\sum_{j=1}^{k} \lambda_{j}$ and $\sum_{j=k+1}^{d} \lambda_{j}$.

2 (ℓ_{1}-Regularization) Consider the ℓ_{1} norm of a vector $\mathbf{x} \in \mathbb{R}^{n}$:

$$
\|\mathbf{x}\|_{1}=\sum_{i}\left|\mathbf{x}_{i}\right| .
$$

Draw the norm-ball $B_{k}=\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq k\right\}$ for $k=1$. On the same graph, draw the Euclidean norm-ball $A_{k}=\left\{\mathbf{x}:\|\mathbf{x}\|_{2} \leq k\right\}$ for $k=1$ behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem
minimize: $f(\mathbf{x})$
subj. to: $\|\mathbf{x}\|_{p} \leq k$
is equivalent to
minimize: $f(\mathbf{x})+\lambda\|\mathbf{x}\|_{p}$
(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_{1} regularization (adding a $\lambda\|\mathbf{x}\|_{1}$ term to the objective) will give sparser solutions than using ℓ_{2} regularization for suitably large λ.

Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights θ of a model is equivelent to ℓ_{1} regularization in the Maximum-aPosteriori estimate

$$
\text { maximize: } \mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})=\frac{\mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}
$$

Note the form of the Laplace distribution is

$$
\operatorname{Lap}(x \mid \mu, b)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
$$

where μ is the location parameter and $b>0$ controls the variance. Draw (by hand) and compare the density $\operatorname{Lap}(x \mid 0,1)$ and the standard normal $\mathcal{N}(x \mid 0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_{2} regularization).

