
Solution
Math189R SU17

Homework 5
Monday, June 5, 2017

Feel free to work with other students, but make sure you write up the homework and
code on your own (no copying homework or code; no pair programming). Feel free to
ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference
section 12.2.2 of Murphy.
(a) Prove that∥∥∥∥∥xi −

k

∑
j=1

zijvj

∥∥∥∥∥
2

= x>i xi −
k

∑
j=1

v>j xix>i vj.

Hint: first consider the case when k = 2. Use the fact that v>i vj is 1 if i = j and 0
otherwise. Recall that zij = x>i vj.

(b) Now show that

Jk =
1
n

n

∑
i=1

(
x>i xi −

k

∑
j=1

v>j xix>i vj

)
=

1
n

n

∑
i=1

x>i xi −
k

∑
j=1

λj.

Hint: recall that v>j Σvj = λjv>j vj = λj.
(c) If k = d there is no truncation, so Jd = 0. Use this to show that the error from only

using k < d terms is given by

Jk =
d

∑
j=k+1

λj.

Hint: partition the sum ∑d
j=1 λj into ∑k

j=1 λj and ∑d
j=k+1 λj.
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(a) We know∥∥∥∥∥xi −
k

∑
j=1

zijvj

∥∥∥∥∥
2

2

=

(
xi −

k

∑
j=1

zijvj

)>(
xi −

k

∑
j=1

zijvj

)

= x>i xi −
k

∑
j=1

zijv>j xi − x>i
k

∑
j=1

zijvj +

(
k

∑
j=1

zijvj

)>( k

∑
j=1

zijvj

)

= x>i xi − 2
k

∑
j=1

zijv>j xi +

(
k

∑
j=1

zijvj

)>( k

∑
j=1

zijvj

)
(bringing x>i into sum)

= x>i xi − 2
k

∑
j=1

zijv>j xi +
k

∑
j=1

v>j z>ij zijvj

= x>i xi − 2
k

∑
j=1

zijv>j xi +
k

∑
j=1

v>j xix>i vj (since v>i vj = 1 iff i = j)

= x>i xi − 2
k

∑
j=1

v>j xix>i vj +
k

∑
j=1

v>j xix>i vj (since zij ∈ R)

= x>i xi −
k

∑
j=1

v>j xix>i vj,

as desired.

(b) By definition

Jk =
1
n

n

∑
i=1

(
x>i xi −

k

∑
j=1

v>j xix>i vj

)

=
1
n

n

∑
i=1

x>i xi −
k

∑
j=1

v>j
1
n

(
n

∑
i=1

xix>i

)
vj

=
1
n

n

∑
i=1

x>i xi −
k

∑
j=1

v>j Σvj

=
1
n

n

∑
i=1

x>i xi −
k

∑
j=1

λj

as desired.
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(c) Since Jd = 0 we know ∑d
j=1 λj =

1
n ∑n

i=1 x>i xi. Then

Jk =
1
n

n

∑
i=1

x>i xi −
d

∑
j=1

λj +
d

∑
j=k+1

λj =
d

∑
j=k+1

λj.

This is an exciting result. This states that the reconstruction error when using a PCA
projection of your data is exactly equal to the sum of the eigenvalues you throw out.

�
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2 (`1-Regularization) Consider the `1 norm of a vector x ∈ Rn:

‖x‖1 = ∑
i
|xi|.

Draw the norm-ball Bk = {x : ‖x‖1 ≤ k} for k = 1. On the same graph, draw the
Euclidean norm-ball Ak = {x : ‖x‖2 ≤ k} for k = 1 behind the first plot. (Do not need
to write any code, draw the graph by hand).

Show that the optimization problem

minimize: f (x)
subj. to: ‖x‖p ≤ k

is equivalent to

minimize: f (x) + λ‖x‖p

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue
why using `1 regularization (adding a λ‖x‖1 term to the objective) will give sparser
solutions than using `2 regularization for suitably large λ.

We see the norm balls below.
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We know the optimization problem

minimize: f (x)
subj. to: ‖x‖p ≤ k

is equivalent to

inf
x

sup
λ≥0
L(x, λ) = inf

x
sup
λ≥0

f (x) + λ(‖x‖p − k).

In its dual we can flip the inf and sup.

sup
λ≥0

inf
x

f (x) + λ(‖x‖p − k) = sup
λ≥0

g(λ)

Since the minimizing value of f (x) + λ(‖x‖p − k) over x is equivalent to the minimizing
value of f (x) + λ‖x‖p (−λk doesn’t depend on x), we know the the optimizing x will
solve

minimize: f (x) + λ‖x‖p

for some suitable value of λ ≥ 0. Looking at the plot and this result, we can consider
`1 regularization as projecting the actual optimal solution of your problem onto some
suitably sized `1 norm ball. Since the `1 ball has sharper edges, the probability of landing
on an edge and not on the face (where both elements of the vector are nonzero) is infinitely
larger than the `2 ball. This is due to the rotation invariance of the `2 that certainly doesn’t
hold for the `1 ball. Generalizing to higher dimensions, we can see that the `1 penalty will
encourage more weights to be zero compared to the `2 ball, as desired.

�
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Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each ele-
ment of the weights θ of a model is equivelent to `1 regularization in the Maximum-a-
Posteriori estimate

maximize: P(θ|D) = P(D|θ)P(θ)
P(D) .

Note the form of the Laplace distribution is

Lap(x|µ, b) =
1
2b

exp
(
−|x− µ|

b

)
where µ is the location parameter and b > 0 controls the variance. Draw (by hand)
and compare the density Lap(x|0, 1) and the standard normal N (x|0, 1) and suggest
why this would lead to sparser solutions than a Gaussian prior on each elements of the
weights (which correspond to `2 regularization).

We know the Maximum-a-Posteriori problem

maximize: P(θ|D) = P(D|θ)P(θ)
P(D) .

is equivalent to maximizing logP(θ|D) given the monotonicity of log(x). This gives

maximize: logP(θ|D) = logP(D|θ) + logP(θ)− logP(D).

Since P(D) is a constant not dependent on θ, we can drop that term from the problem and
flip into a minimization problem, giving

minimize: − logP(D|θ)− logP(θ).

Given a prior θi ∼ Lap(0, b),

− logP(θ) = − log ∏
i

exp
(
−|θi|

b

)
+ Z (where Z is a constant)

=
1
b ∑

i
|θi|+ Z

= λ‖θ‖1 + Z. (where λ = 1/b)

It follows that our original problem is equivalent to

minimize: − logP(D|θ) + λ‖θ‖1,

or a `1 regularized maximum likelihood estimate, as desired. Note the plots of the Stan-
dard Normal and Laplace Densities.
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We can see that Lap(0, 1) will place much more mass at x = 0. It follows that when we
use a Laplace prior instead of a Gaussian prior on our weights, our weights will be more
encouraged to be exactly zero, forcing sparsity.

�
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