Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework or code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.
(a) Prove that

$$
\left\|\mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right\|^{2}=\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}
$$

Hint: first consider the case when $k=2$. Use the fact that $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}$ is 1 if $i=j$ and 0 otherwise. Recall that $z_{i j}=\mathbf{x}_{i}^{\top} \mathbf{v}_{j}$.
(b) Now show that

$$
J_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \lambda_{j} .
$$

Hint: recall that $\mathbf{v}_{j}^{\top} \boldsymbol{\Sigma} \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}^{\top} \mathbf{v}_{j}=\lambda_{j}$.
(c) If $k=d$ there is no truncation, so $J_{d}=0$. Use this to show that the error from only using $k<d$ terms is given by

$$
J_{k}=\sum_{j=k+1}^{d} \lambda_{j}
$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_{j}$ into $\sum_{j=1}^{k} \lambda_{j}$ and $\sum_{j=k+1}^{d} \lambda_{j}$.
(a) We know

$$
\begin{align*}
& \left\|\mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right\|_{2}^{2}=\left(\mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right)^{\top}\left(\mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right) \\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}^{\top} \mathbf{x}_{i}-\mathbf{x}_{i}^{\top} \sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}+\left(\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right)^{\top}\left(\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right) \\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-2 \sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}^{\top} \mathbf{x}_{i}+\left(\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right)^{\top}\left(\sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}\right) \quad \text { (bringing } \mathbf{x}_{i}^{\top} \text { into sum) } \\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-2 \sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}^{\top} \mathbf{x}_{i}+\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} z_{i j}^{\top} z_{i j} \mathbf{v}_{j} \\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-2 \sum_{j=1}^{k} z_{i j} \mathbf{v}_{j}^{\top} \mathbf{x}_{i}+\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-2 \sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}+\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j} \tag{ij}\\
& =\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}
\end{align*}
$$

as desired.
(b) By definition

$$
\begin{aligned}
J_{k} & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}_{j}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \frac{1}{n}\left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \mathbf{v}_{j} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{v}_{j}^{\top} \mathbf{\Sigma} \mathbf{v}_{j} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{k} \lambda_{j}
\end{aligned}
$$

as desired.
(c) Since $J_{d}=0$ we know $\sum_{j=1}^{d} \lambda_{j}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}$. Then

$$
J_{k}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}-\sum_{j=1}^{d} \lambda_{j}+\sum_{j=k+1}^{d} \lambda_{j}=\sum_{j=k+1}^{d} \lambda_{j}
$$

This is an exciting result. This states that the reconstruction error when using a PCA projection of your data is exactly equal to the sum of the eigenvalues you throw out.

2 (ℓ_{1}-Regularization) Consider the ℓ_{1} norm of a vector $\mathbf{x} \in \mathbb{R}^{n}$:

$$
\|\mathbf{x}\|_{1}=\sum_{i}\left|\mathbf{x}_{i}\right| .
$$

Draw the norm-ball $B_{k}=\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq k\right\}$ for $k=1$. On the same graph, draw the Euclidean norm-ball $A_{k}=\left\{\mathbf{x}:\|\mathbf{x}\|_{2} \leq k\right\}$ for $k=1$ behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem
minimize: $f(\mathbf{x})$
subj. to: $\|\mathbf{x}\|_{p} \leq k$
is equivalent to
minimize: $f(\mathbf{x})+\lambda\|\mathbf{x}\|_{p}$
(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_{1} regularization (adding a $\lambda\|\mathbf{x}\|_{1}$ term to the objective) will give sparser solutions than using ℓ_{2} regularization for suitably large λ.

We see the norm balls below.

We know the optimization problem

$$
\begin{aligned}
& \operatorname{minimize}: f(\mathbf{x}) \\
& \text { subj. to: }\|\mathbf{x}\|_{p} \leq k
\end{aligned}
$$

is equivalent to

$$
\inf _{\mathbf{x}} \sup _{\lambda \geq 0} \mathcal{L}(\mathbf{x}, \lambda)=\inf _{\mathbf{x}} \sup _{\lambda \geq 0} f(\mathbf{x})+\lambda\left(\|\mathbf{x}\|_{p}-k\right) .
$$

In its dual we can flip the inf and sup.

$$
\sup _{\lambda \geq 0} \inf _{\mathbf{x}} f(\mathbf{x})+\lambda\left(\|\mathbf{x}\|_{p}-k\right)=\sup _{\lambda \geq 0} g(\lambda)
$$

Since the minimizing value of $f(\mathbf{x})+\lambda\left(\|\mathbf{x}\|_{p}-k\right)$ over \mathbf{x} is equivalent to the minimizing value of $f(\mathbf{x})+\lambda\|\mathbf{x}\|_{p}(-\lambda k$ doesn't depend on $\mathbf{x})$, we know the the optimizing \mathbf{x} will solve
minimize: $f(\mathbf{x})+\lambda\|\mathbf{x}\|_{p}$
for some suitable value of $\lambda \geq 0$. Looking at the plot and this result, we can consider ℓ_{1} regularization as projecting the actual optimal solution of your problem onto some suitably sized ℓ_{1} norm ball. Since the ℓ_{1} ball has sharper edges, the probability of landing on an edge and not on the face (where both elements of the vector are nonzero) is infinitely larger than the ℓ_{2} ball. This is due to the rotation invariance of the ℓ_{2} that certainly doesn't hold for the ℓ_{1} ball. Generalizing to higher dimensions, we can see that the ℓ_{1} penalty will encourage more weights to be zero compared to the ℓ_{2} ball, as desired.

Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights $\boldsymbol{\theta}$ of a model is equivelent to ℓ_{1} regularization in the Maximum-aPosteriori estimate

$$
\text { maximize: } \mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})=\frac{\mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}
$$

Note the form of the Laplace distribution is

$$
\operatorname{Lap}(x \mid \mu, b)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
$$

where μ is the location parameter and $b>0$ controls the variance. Draw (by hand) and compare the density $\operatorname{Lap}(x \mid 0,1)$ and the standard normal $\mathcal{N}(x \mid 0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_{2} regularization).

We know the Maximum-a-Posteriori problem
maximize: $\mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})=\frac{\mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}$.
is equivalent to maximizing $\log \mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})$ given the monotonicity of $\log (x)$. This gives
maximize: $\log \mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})=\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})+\log \mathbb{P}(\boldsymbol{\theta})-\log \mathbb{P}(\mathcal{D})$.
Since $\mathbb{P}(\mathcal{D})$ is a constant not dependent on θ, we can drop that term from the problem and flip into a minimization problem, giving

$$
\text { minimize: }-\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})-\log \mathbb{P}(\boldsymbol{\theta})
$$

Given a prior $\boldsymbol{\theta}_{i} \sim \operatorname{Lap}(0, b)$,

$$
\begin{aligned}
-\log \mathbb{P}(\boldsymbol{\theta}) & =-\log \prod_{i} \exp \left(-\frac{\left|\boldsymbol{\theta}_{i}\right|}{b}\right)+Z \\
& =\frac{1}{b} \sum_{i}\left|\boldsymbol{\theta}_{i}\right|+Z \\
& =\lambda\|\boldsymbol{\theta}\|_{1}+Z .
\end{aligned}
$$

It follows that our original problem is equivalent to

$$
\text { minimize: }-\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1}
$$

or a ℓ_{1} regularized maximum likelihood estimate, as desired. Note the plots of the Standard Normal and Laplace Densities.

We can see that $\operatorname{Lap}(0,1)$ will place much more mass at $x=0$. It follows that when we use a Laplace prior instead of a Gaussian prior on our weights, our weights will be more encouraged to be exactly zero, forcing sparsity.

