Solution

Math189R SU17
Homework 5
Monday, June 5, 2017

Feel free to work with other students, but make sure you write up the homework and
code on your own (no copying homework or code; no pair programming). Feel free to
ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference
section 12.2.2 of Murphy.
(a) Prove that
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Hint: first consider the case when k = 2. Use the fact that viij islifi =jand 0

otherwise. Recall that z;; = xz.Tv]-.
(b) Now show that
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(c) If k = d there is no truncation, so J; = 0. Use this to show that the error from only
using k < d terms is given by
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(a) We know
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(b) By definition
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(c) Since J; = 0 we know 2?:1 Aj = %E?:l xiTxl-. Then
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This is an exciting result. This states that the reconstruction error when using a PCA
projection of your data is exactly equal to the sum of the eigenvalues you throw out.



2 (¢1-Regularization) Consider the /1 norm of a vector x € R™:

Ix[l = ) |il.
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Draw the norm-ball By = {x : ||x|j < k} for k = 1. On the same graph, draw the
Euclidean norm-ball Ay = {x : ||x||2 < k} for k = 1 behind the first plot. (Do not need
to write any code, draw the graph by hand).

Show that the optimization problem

minimize: f(x)
subj. to: ||x||, <k

is equivalent to
minimize: f(x) 4 Al|x||,

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue
why using ¢; regularization (adding a A||x||; term to the objective) will give sparser
solutions than using ¢, regularization for suitably large A.

We see the norm balls below.




We know the optimization problem

minimize: f(x)
subj. to: [|x|[, <k

is equivalent to

infsup L(x,A) = infsup f(x) + A(||x||, — k).
X A>0 X A>0

In its dual we can flip the inf and sup.

supinf f(x) + A([[x]|, — k) = supg(A)
A>0 A>0

Since the minimizing value of f(x) + A(||x||, — k) over x is equivalent to the minimizing
value of f(x) 4+ A|x||, (—=Ak doesn’t depend on x), we know the the optimizing x will
solve

minimize: f(x) + A[|x][,

for some suitable value of A > 0. Looking at the plot and this result, we can consider
¢ regularization as projecting the actual optimal solution of your problem onto some
suitably sized ¢; norm ball. Since the ¢; ball has sharper edges, the probability of landing
on an edge and not on the face (where both elements of the vector are nonzero) is infinitely
larger than the ¢, ball. This is due to the rotation invariance of the ¢ that certainly doesn’t
hold for the ¢ ball. Generalizing to higher dimensions, we can see that the ¢; penalty will
encourage more weights to be zero compared to the ¢, ball, as desired.



Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each ele-
ment of the weights 0 of a model is equivelent to ¢; regularization in the Maximum-a-
Posteriori estimate

P(D|0)B(0)

maximize: P(0|D) = B(D)

Note the form of the Laplace distribution is

1 X —
Lap(x|u,b) = %exp (_|_bV’)

where p is the location parameter and b > 0 controls the variance. Draw (by hand)
and compare the density Lap(x|0,1) and the standard normal N (x|0,1) and suggest
why this would lead to sparser solutions than a Gaussian prior on each elements of the
weights (which correspond to ¢, regularization).

We know the Maximum-a-Posteriori problem

N _ P(D[6)P(6)

maximize: P(B‘D) = W

is equivalent to maximizing log P(8|D) given the monotonicity of log(x). This gives
maximize: logP(0|D) = logP(D|0) + logP(0) — logP(D).

Since P(D) is a constant not dependent on 6, we can drop that term from the problem and
flip into a minimization problem, giving

minimize: —logP(D|0) — logP(0).

Given a prior 6; ~ Lap(0, b),

—logP(6) = — logHexp (—%) +Z (where Z is a constant)
i
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It follows that our original problem is equivalent to
minimize: —logP(D|6) + A||0]]1,

or a {1 regularized maximum likelihood estimate, as desired. Note the plots of the Stan-
dard Normal and Laplace Densities.
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We can see that Lap(0, 1) will place much more mass at x = 0. It follows that when we
use a Laplace prior instead of a Gaussian prior on our weights, our weights will be more
encouraged to be exactly zero, forcing sparsity.



