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Limitations of Neural ODEs

There are certain functions that cannot be represented by the Neural ODE
in an arbitrary dimension d.

g(x)=-1 if |x[[<n
gx)=1 ifn<|x||<n,

inwhich0<rp <nmn<nr.
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Example (Continued)

The figure shows g(x) in two-dimension. The blue region maps to —1 and
the red region points to 1.

Figure: Diagram of g(x) in two dimension (R?)
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Augmented Neural ODEs

The Augmented Neural ODE introduces additional dimensions to the
space to produce a simpler solution tot he problem.

In standard practice, the coordinates of the extra dimensions are initially
set to zero, that is,

r Xo
o = [OP € RP} (1)
If the ANODE block has initial network NNanope then the state evolution
is described as

X/(t) :/NNANODE(x/a t)dt (2)

the same as vanilla NODEs.
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Examples of ANODE

[

Neural ODE Augmented Neural ODE

Figure: Neural ODE and Augmented Neural ODE
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Examples of ANODE

Inputs Flow Features
/

a
—
w
Q| = - —
= -
<
a
o~
w
a
ol
P4

P »

Egai
o | ;
N Y 1 Il
w L v
[=] e~ PR I
g e ] T <P |
< 4 Z >

Figure: Flows learned by NODEs and ANODEs
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Original Vanilla Node Architechture
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Figure: Illustration of the used vanilla NODE architechture
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ANODE Architechture
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Figure: Illustration of the used Augmented NODE architecture
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Results for ANODE on ECG Dataset
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Figure: Plot of classification accuracy versus number of parameters for vanilla and
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Adaptive-Depth Neural ODEs

As mentioned in last section, it is impossible for a Neural ODE to solve a
function that involves crossing trajectory. Besides augmented neural
ODEs, we are going to introduce Adaptive-Depth Neural ODEs to tackle

the problem.
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Adaptive-Depth Neural ODEs

The integration time span is no long constant and instead decided based
on the specific input using a small NN.

The integration time span is [0, NNgeptn(X0)]. The output of the entire AD
NODE block is thus
which leads to

NNgepth (o)
Xout = / NNapnope(x, t)dt. (3)
0
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Example of adaptive-depth NODE
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Figure: Adaptive-depth Neural ODEs that avoid the crossing trajectory
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Results of Adaptive-Depth NODE
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Figure: Plot of classification accuracy versus number of parameters for-adaptive
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Results of Adaptive-Depth NODE
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Figure: Plot of typical learning curves between vanilla and adaptive depth NODE
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Thank you!
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