
Neural ODEs on the MIT-BIH Electrocardiogram
Dataset

Jimmy Chen and Laurie Luo
Math 179, Harvey Mudd College

jimchen@hmc.edu, hluo@hmc.edu

Abstract

In this paper, we discuss and motivate the concepts and implementation details of a1

newer class of machine learning algorithms, Neural Ordinary Differential Equation2

(NODE), as well two extensions – augmented NODE and adaptive depth NODE.3

We apply these methods to the electrocardiogram (ECG) dataset from the MIT4

Beth Israel Hospital (BIH). We first successfully replicate the result of a particular5

NODE implementation on the ECG dataset by the GitHub user abaietto, who6

compares a ResNet and a NODE model with similar architectures. Next, drawing7

inspiration from abaietto’s model, we implement the two extended methods, and8

provide further comparison analysis on their respective performance.9

1 Neural Network and ResNet10

Neural Networks (NN) are a family of algorithms that models over datasets and provides predictions.11

They play a central role in modern machine learning process, particularly deep learning.12

For example, in a classical data modelling problem, we have N pairs of data point X =13

(x1,y1), (x2,y2), ..., (xN ,xN)), where xi ∈ X is the input domain and yi ∈ Y is the output14

domain, and some sort of relationship exists between the two variables:15

X ? Y16

We would like to utilize the existing dataset and make prediction of the output y∗ giving a new data17

point x∗. The highly flexible NN can be iteratively trained on the dataset, ultimately describing the18

dataset with accuracy. Using an NN turns the classical situation into the situation below:19

X ? Y

NeuralNetwork

20

Internally, a generic NN consists of several layers of neurons, mimicking the way the human brain21

operates. In this sense, neural networks refer to systems of neurons, either organic or artificial in22

nature. Figure 1 is a detailed illustration of common, fully connected neural network. The input data23

xi is first fed into the first layer, where it is transformed by the layer to some intermediate values,24

which are further transformed by the next layer, and so on. In this way, the neural network can be25

viewed as a giant composite function and, thus, the more layers there are, the deeper the network it is.26

For a fully connect layer, the input of each neuron is a weighted summation over the previous values27

with a constant term as bias, and then the result is passed through a scalar activation function, usually28

nonlinear.29

Midterm Project for Math 179 in Harvey Mudd College.

Figure 1: Illustration of a fully-connect Neural Network.

Hence, the number of layers deeply affects the performance of the neural network. Too few layer,30

meaning too few parameters, will cause under-fitting, wile too many layers will cause over-fitting31

(shown in Figure 2).32

Figure 2: Underfitting and Overfitting.1

One class of NNs effectively allows the number of layers to be adaptively optimized for the dataset:33

they are the Residual Neural Networks (ResNet). Whereas regular multi-layer perceptions and many34

other NNs chain layers together linearly through composition only, ResNets introduce shortcuts that35

skip over groups of layers by adding intermediate results from a few layers prior to the current output.36

One can consider a group of layers that has such a shortcut over it as a single residual block (or37

group). For the kth residual block, the output is the addition Resk(xk) + xk, between the processed38

output of the internal layers and the original input:39

xk+1 = ResBlockk(xk) = Resk(xk) + xk (1.1)

Figure 3: Illustration of a ResNet block. 2

1Credit: https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

2

https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

The transition to Neural ODE begins by noting that equation 1.1 bears some resemblance to a forign40

concept. If we treat the internal process Resk(xk) as giving the derivative of a unified "variable" x at41

"time" k, then the equation effectively represents the Euler method for solving the ODE (with unit42

time step)43

dx

dt

∣∣∣∣
t=k

= Res(xk, k) (1.2)

where Res(xk, k) = Resk(xk) represents Resk at all ks.44

Figure 4: ResNet interpreted as the Euler method.

Figure 4 further illustrates the correlation between ResNet and the Euler method. Four ResNet blocks45

B0...3 are shown, with internal networks NN0...3 and shortcuts as arrow from each input to output.46

Now we can reinterpret each the network output as the derivative to some function of t, shown as47

the dark curved line. Take the first step for example. For the first block B0, its internal network NN048

takes in the initial point of x, x0 at t0, and produces some x′(t0). To approximate the value of the49

function at the next time point t1, we multiply it by the time step ∆t which is assumed to be unit,50

so x′(t0) = ∆x0, the change in value in this time step. The final estimate is the sum of the original51

x0 and the change ∆x0. In the ResNet block, this is the sum of the network output and the original52

input through the shortcut. The step is then repeated three more times by different ResNet blocks,53

each corresponding to a specific time point.54

2Credit: https://neurohive.io/en/popular-networks/resnet/

3

https://neurohive.io/en/popular-networks/resnet/

This does assume that the intermediate results xk to share the same dimensions, but the assumption is55

less important than our purpose of illustration. The point is this: if ResNet approximates an ODE56

solution by the Euler method, then we can naturally extended ResNet by considering other, and better,57

integration methods.58

2 Neural ODE59

Neural ODEs (NODE) are a continuous re-imagination of ResNet. They model curves in arbitrary60

dimensions as solutions to first order ODEs, and are thus inherently applicable to time series. When61

ResNet is thought as the Euler method, each residual block corresponds to one discrete time step in62

the Euler method: the kth group takes the previous result xk and gives the derivative of x at time tk.63

Note that each residual group is only responsible for a single time point. Neural ODE instead uses a64

single NN to produce all derivatives by taking the time point as explicit input:65

dx

dt
= NNNODE(x, t). (2.1)

It follows that the solution to this ODE is the integral over time:66

x(t) =

∫
NNNODE(x, t)dt (2.2)

From a computational standpoint, this integral can be approximated with any numerical method.67

Figure 5

4

Figure 5 illustrates the operation of a Neural ODE. A single neural network produces all derivatives68

of the ODE it models: at each time point t, it takes in t and the current value x, and the output of69

the NN is used as the derivative x′(t). The network parameters remain constant regardless of time,70

while the input t varies. This contrasts with ResNet as the Euler method, which uses entirely different71

networks for different time points.72

As Neural ODEs are flexible in integration methods, integration points, the time points at which the73

derivative is evaluated, can be freely chosen in principle, both in amount and in value. In practice,74

this can reflect in adaptive strategies in choosing integration points such as reducing the step size75

when derivatives are large in magnitude.76

Such generality has immediate advantages. Numerical methods for solving ODEs has been a rich77

and much-explored field, with optimized methods for accuracy, speed, and specific ODE types, most78

significantly superior to the Euler method. For instance, a number of fourth-order Runge–Kutta79

methods exist where the accumulated error scales with the fourth power of step size, whereas in the80

Euler’s case the error is linear with step size.81

Neural ODE also opens up the flexibility of choosing algorithms and of balancing between accuracy82

and speed. As a ResNet block corresponds to a single time step of the Euler method, the number83

of steps taken is tied to the ResNet’s structure, namely the depth of the network. For Neural ODEs84

the number of steps is variable and controllable, which effectively establishes flexible depth. Larger85

network depth makes it more expressible and accuracy while a smaller depth cuts the time and86

resource cost of iterative computation. Additionally, for ResNet the memory cost of storing layers87

of parameters scales with depth, while Neural ODE has a constant memory profile. Finally, Neural88

ODES can be evaluated at any point along the solution curve, which is ideal for modeling data with89

irregular time point.90

3 Implementation Example91

In this section we replicate the result an implementation given in https://github.com/abaietto/92

neural_ode_classification. The author of this implementation (who we will refer to as abaietto,93

their GitHub username) compares the accuracy, time cost and memory cost of similarly structured94

ResNet and NODE models in the context of a supervised learning task, namely the classification of95

an ECG signal.96

3.1 Electrocardiogram Dataset97

This implementation uses MIT Beth Israel Hospital (BIH) electrocardiogram (ECG) dataset. The98

data is obtained from Kaggle [1], containing about 110,000 labeled data points about heartbeat99

classification. Each sample is annotated into the following five categories: normal (0), supraventricular100

premature beat (1), premature ventricular contraction (2), fusion of ventricular and normal beat (3),101

and finally unclassifiable beat (4). The ECGs were recorded at a frequency of 360 Hz. Thus, each102

sample was taken over 0.52 seconds since there are 187 measurements per sample. From the data,103

the proportion of each category is shown in Table 1, which shows normal heartbeats are the most104

common category.105

Category Proportion
0 0.83
1 0.03
2 0.07
3 0.01
4 0.07

Table 1: Proportion of each category of heartbeat

To better understand each heartbeat type, we obtained examples for each category, as shown below.106

5

https://github.com/abaietto/neural_ode_classification
https://github.com/abaietto/neural_ode_classification
https://github.com/abaietto/neural_ode_classification

Figure 6: 3

3.2 Network Architecture107

For the purpose of comparison, the ResNet model and the NODE model here are identical in many108

layers. Each cardiogram sample consists of 187 values. For both models, the first three layers are109

one dimensional convolutions, who together results in 64 channels of time-local series, each now110

with 46 values. For the ResNet, this is followed by six ResNet blocks identical in structure, each111

with two convolutions layers plus normalization. For the NODE, the six blocks of the ResNet are112

replaced by one Neural ODE block, which has an internal NN consisting of two convolutions also113

with normalization. From this point, both models go through a fully connected layer which outputs to114

a size of 5 representing the categorization task.115

Figure 7: Comparison of accuracy between the ResNet and the Neural ODE

3Credit: [2].

6

3.3 Characteristics and Comparison Between ResNet and NODE116

We are able to fully replicate the results of the the original author abaietto. Training each network117

for 5 epochs, the ResNet produced a final accuracy of 0.985 on the training dataset and 0.980 on the118

test set, while the Neural ODE produced 0.982 and 0.979 for training and test respectively. Figure 7119

shows historical accuracies by epochs. We see that the final accuracies are similar between the two120

models.121

An advantage of Neural ODEs is demonstrated when we compare the size of the models. Namely,122

while the ResNet contains 182853 parameters, the NODE has only 59333, thus producing the same123

level of accuracy as the ResNet with less than one third of the memory cost. The difference in model124

size is directly reflected in the network structure: the ResNet notably uses 6 residual blocks each125

containing 24832 parameters while the NODE uses one Neural ODE block with 25472 parameters.126

This verifies the aforementioned theoretical advantage of NODE networks in memory.127

The implementation also reflects a potential disadvantage of Neural ODES, namely training and128

evaluation time. For evaluation, the ResNet takes around 9 seconds on our hardware with the test set129

as input while the NODE takes around 70 seconds; for training with the selected optimizer (stochastic130

gradient descent with momentum optimization), the ResNet takes around 1.6 to 1.8 minutes per epoch131

while the NODE spends around 11.7 to 16.6 minutes per. The multiplied time cost of Neural ODEs132

has been implicitly noted by several others, namely in [4], [5] and [6] all motivated by efficiency.133

An immediate area for future work are to incorporate these efficiency optimizations to this specific134

dataset.135

4 Extensions of Neural ODE136

We investigate several variants of Neural ODE to find potential improves in classification accuracy137

and training cost. We will refer to the basic Neural ODE model as vanilla where clarification is138

needed.139

4.1 Augmented Neural ODEs140

We begin by discussing a limitation of vanilla Neural ODEs. As shown in [7], there are certain141

functions that cannot be perfectly represented by Neural ODEs in an arbitrary dimension d. For142

example, neural ODE can never fully represent the function g : Rd → R defined as follows:143

{
g(x) = −1 if ∥x∥ ≤ r1
g(x) = 1 if r2 ≤ ∥x∥ ≤ r3,

in which 0 < r1 < r2 < r3. Figure 8 shows g(x) in two-dimension. The blue region maps to −1144

and the red region points to 1.145

7

Figure 8: Diagram of g(x) in two dimension (R2).4

While the proof requires the knowledge from ODE theory and topology, the reasoning is intuitive.146

A Neural ODE block represent a vector field, its input and output are states (or points) in the field,147

and the transformation by the block is a trajectory of flow of its input through the field. Crossing148

trajectories in a vector field can never diverge again as it would imply some points in the field to149

simultaneously have two distinct gradients. Consider such transformation then as a smooth topological150

transformation. The standard NODE classification approach, a vanilla NODE block followed by a151

linear layer, will not work: the NODE block make the two regions of points linearly separable for the152

linear layer, but function represents the blue region completely enclosed by the red hyperspherical153

shell; there is no way to pull the inner region outside without passing it through the output region.154

The feature can be generalized to a statement that summarize what Neural ODEs can represent: they155

can only continuously deform the input space and cannot tear a connected region apart. For the class156

of functions g, this is a limitation for NODEs. However, one can circumvent such limitation by157

considering the problem in higher dimensions. For the concentric hypersphere problem of modeling158

g, only one additional dimension is needed:159

Figure 9: Illustration of the flow required for modeling two-dimensional g, in two
dimensions (left) and three dimensions (right). Separating the two regions in 2D through
vector field flow is impossible and can only be approximated by complex flow, while in
3D this can easily be done by moving the two regions in opposite directions along the
third dimension. 5

This is the method of augmented Neural ODEs (ANODEs). ANODEs introduce additional dimensions160

to the input space Rd and find a flow in Rd+p, which can drastically reduce the complexity of the161

4Credit: [7].
5Credit: [7].

8

model. Given an input x0 ∈ Rd, ANODEs consider it in Rd+p as x′
0 and evolves it in the higher162

dimension field accordingly. In standard practice, the coordinates of the extra dimensions are initially163

set to zero, that is,164

x′
0 =

[
x0

0p ∈ Rp

]
(4.1)

Note that the extra dimension values are only initially zero; as the initial state evolves in the higher165

dimension field it will traverse into the extra dimensions. If the ANODE block has initial network166

NNANODE then the state evolution is described as167

x′(t) =

∫
NNANODE(x

′, t)dt (4.2)

the same as vanilla NODEs.168

Figure 10: Flows learned by NODEs and ANODEs. 6

A more concrete example shows in Figure 10. Figure 10 shows g(x) in different dimensions.169

When trained on g(x), augmented neural ODE is able to describe the function while NODE cannot.170

Augmented NODE represent the flow of function when d = 1 in two dimensions. As a result, it171

separates the points and got a simpler flow without crossings. Also, when d = 2, augmented neural172

ODE represents the flow in three dimension while the NODE was trained in two dimension. The173

resulting flow of NODE is complicated with a lot of crossing. However, the flow resulted from174

augmented Node is simple because of the introduction of the higher dimension.175

4.2 Adaptive-Depth Neural ODEs176

As mentioned in last section, it is impossible for a Neural ODE to solve a function by crossing177

trajectory. An alternative to augmentation is the method of adaptive depth NODEs (AD NODES).178

Depth here refers to the time bounds of the ODE solution in a NODE block, i.e. the time t0 that the179

input state x0 is interpreted to be at, and the time t1 that the state is evolved to. The meaning of this180

time span (t0, t1) varies with context. A NODE block can directly model after a time series as an181

6Credit: [7].

9

ODE, such that the input, intermediate and output states of the NODE are of the same space of the182

data, and that the internal network of the NODE is expected to produce the derivatives of the time183

series. The time variable of the time series is thus shared by the NODE, and so the integration time184

span is that of the data. On the other hand, a NODE block can also be used in a blackbox fashion,185

where the vector field and transformation it describes has little specific meaning. The time variable of186

such a NODE block also does not correspond to any aspect of the input. In practice, the time span is187

usually set to [0, 1] (see Appendix for a discussion in detail).188

Adaptive depth NODEs allows the depth to be dependent on each data sample by using a small189

NNdepth to decide it. The NN’s input is the NODE block’s input, and its output is the ending time190

point, so that the integration time span is [0,NNdepth(x0)]. The output of the entire AD NODE block191

is thus192

xout =

∫ NNdepth(x0)

0

NNADNODE(x, t)dt (4.3)

Figure 11 shows an example of how the adaptive-depth neural ODE avoid the crossing trajectory.193

Figure 11: Illustration of an adaptive depth NODE mode, taken from the original paper
[8]. The notation differs from ours, with s representing time and z(s) the state at time s.
Depending on the initial state, the blue and orange trajectories end at different times,
3 and 1 respectively. This is a solution to the "reflection problem" as proposed by [8]:
the function φx = −x, x ∈ {−1, 1}. With constant depth the trajectories would have
to cross each other, but with adaptive depth this is easily solvable without relying on
augmentation.7

5 Experiments on the ECG Dataset194

We implemented the two extension methods of NODE, and ran all model types on large hyperparam-195

eter ranges. Here we discuss the models considered in detail and compare the performance of vanilla,196

augmented, and adaptive depth NODEs.197

5.1 Implementation Details198

As we can see in Table 1, there is significant class imbalance. One disadvantage of training a199

model directly on imbalanced datasets, as is with abaietto’s implementation, is that accuracy can be200

misleading. An elementary model which always reports class 0 can achieve an accuracy of 83%;201

the high first epoch accuracy shown in Figure 7 also demonstrates this. Thus, we have randomly202

re-sampled 81920 cases from the training set and 20480 from the validation set, where each case has203

an equal probability chosen from each class. The number of cases where chosen to be similar to the204

original dataset sizes (87553 and 21891). All models referenced below were trained and tested on the205

re-sampled, balanced dataset, and references to accuracy scores below assume a balanced dataset.206

7Credit: [8].

10

Our model architectures are partially based on abaietto’s NODE network.207

Figure 12: Illustration of the used vanilla NODE architecture. Each sample of ECG
data is fed into the network as single time series (gray, left); through 1 or more layers
of 1D convolution, the input is downsampled, thus shorter in length, but expanded
into multiple channels (multiple color, left); the data is then treated as a single state
in a vector field, whose gradients defined by an internal network, and evolves while
maintaining dimension (multiple gradient colors, right); finally, a pooling and a fully
connect layer outputs a score for each ECG class.

Figure 13: Illustration of the used Augmented NODE architecture. The difference from
the vanilla NODE is the addition of zero-filled channels around the NODE block. The
added channels are then utilized by the NODE block in the same fashion as the original
channels, by the fact that they are no longer zero afterwards.

For the AD NODE architecture we follow the approach originally proposed by [8]. On top of the208

vanilla NODE, we use a small NN to control the integration depth of the ODE solver. The small NN209

is a fully connected network with one tunable-size hidden layer; its input is a single channel of the210

NODE block’s input, as the latter full input is usually large and using it with a dense network will211

contribute a significant portion of parameters; finally, its output is transformed by s → |1 + s| and212

the final time span is [0, |1 + s|].213

5.2 Results and Discussion214

The two figures below display the resulting performances of vanilla, augmented, and adaptive215

depth NODE models. Variable hyperparameters include the number of channels produced during216

downsampling (and separately the number of augmented channels if applicable), kernel sizes and217

stride lengths of convolution layers, number of layer groups for downsampling section and the218

11

NODE block separately (either one or two groups each with one group normalization, activation and219

convolution in that order), size of the hidden layer of the depth-deciding NN for AD models, and220

learning rate8.221

Figure 14: Plot of classification accuracy versus number of parameters for vanilla and
augmented NODE networks. Each pair of square and hollow circle point represent a
NODE model with a specific set of hyperparameters, trained for 15 epochs. The hyper-
parameters are randomly distributed in predetermined ranges. As expected, accuracies
on the training dataset are general better than the validation dataset. Notably, model
performance seems to correlate strongly with model size, while we expected to find
more variation from the varying hyperparameters. In addition, performances between
vanilla and augmented models are effectively the same given model size.

An shown in Figure 14, performance of vanilla and augmented NODE models are similar given222

any model size. As ANODEs can be seen as a generalization of vanilla NODEs (with the latter223

as a specialization with zero augmented channels), it means that the additional hyperparameter224

of augmented channels has no impact on performance beside influence the number of trainable225

parameters in the model. A reason for this may lay in our architecture design. Given the number of226

channels is variable in our case, we do not observe an significant decrease in performance by cutting227

said number any more beside the reduction in model size. Hence, the number of channels may not be228

a bottleneck in performance. This is in contrast with the case of the concentric hypersphere problem229

discussed in Section 4.1, where the input dimension is a limiting factor of the problem. Our nonlinear230

downsampling layers may have effectively augmented the input by expanding channels. Nonetheless,231

the additional flexibility is still a desirable properties of ANODEs, as it can further optimize other232

properties such as the time cost of training. We leave this as a potential direction for further research.233

8Admittedly, learning rate were not strictly controlled for, and instead generally chosen to be the best
performing ones at the end of training. In practice, the set of learning rates is mostly 0.001, and the rest are
mostly between 0.0001 and 0.001.

12

Figure 15: Plot of classification accuracy versus number of parameters for adaptive
depth NODE networks. Models has randomly distributed hyperparameters and are
trained for 10 epochs. The correlation between accuracy and size is much weaker for
AD models than for vanilla and augmented models.

AD NODES demonstrate a weaker correlation between model size and accuracy, as seen in Figure234

15 with a noisier distribution. Further empirical investigations suggest that no hyperparameter235

consistently affect model accuracy beyond contributing to model size. We hypothesize that our AD236

NODE architecture may be more sensitive to initial parameters and has complex loss landscape (in237

the sense of non-convexity). The latter point is supported by the fact the AD NODE models take238

significantly longer to train, as shown in Figure 16.239

Figure 16: Plot of average model training time per minibatch versus model size. Al-
though other hyperparameters affecting training time were not controlled for, they are
randomly distributed in roughly the same range such that the contrast in the figure is still
meaningful. And the contrast is clear: AD NODEs (red) takes much longer to train than
vanilla (blue) and augmented (green) NODEs. The latter two have similar training time.

13

A second evidence pointing towards complex loss landscape comes from the learning curve. Infor-240

mally, a learning curve is a descent down the loss landscape. As seen in Figure 17, AD models’241

learning curve tend to be jagged compared to that of vanilla and augmented models, hinting at rougher242

paths in AD model’s landscape.243

Figure 17: Plot of typical learning curves between vanilla and adaptive depth NODE
models. AD models tend to have noisier learning curves with temporary rises and falls
in error rate, while vanilla models, as well as augmented models, usually show a smooth
reduction in error.

For our implementation and use case, AD models generally have worse performance than vanilla and244

augmented models if trained for the same number of epochs. If our hypothesis about AD’s complex245

landscape holds then it is likely the reason behind this loss in performance. While AD models are246

technically also a generalization of vanilla models (whose depth-deciding function is just constant),247

the additional dimension of versatility can complicate a problem for the optimizer, which is reflected248

in complex loss landscape.249

6 Conclusion250

In this work, we discussed the theoretical aspect of Neural ODE and its connection to ResNet. We251

also focus on two extensions of NODEs, namely augmented and adaptive depth NODEs. Based on252

an existing implementation, we built our own architectures of the three methods. For each method,253

we trained a large number of models similar in architecture over a set range of hyperparameters,254

and reported observations and analysis. We found that for our model design and dataset, augmented255

NODE models perform similar to vanilla models with the same number of model parameters, while256

adaptive depth NODE models tend to perform worse. We hypothesis that AD NODE complicates257

the loss landscape compared to the other two methods. Our work focuses on a narrow range of258

architectures for this specific ECG dataset; future work can expand upon said range and make more259

general statements about the investigated methods.260

14

References261

[1] https://www.kaggle.com/datasets/shayanfazeli/heartbeat262

[2] https://github.com/abaietto/neural_ode_classification263

[3] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). ‘Neural Ordinary264

Differential Equations’. arXiv. https://doi.org/10.48550/ARXIV.1806.07366265

[4] Kidger, Patrick, Ricky T. Q. Chen, Terry J. Lyons. ‘’Hey, that’s not an ODE’: Faster ODE Adjoints266

with 12 Lines of Code’. CoRR abs/2009.09457 (2020): n. pag. Web.267

[5] Bilos, Marin. ‘Neural Flows: Efficient Alternative to Neural ODEs’. CoRR abs/2110.13040268

(2021): n. pag. Web.269

[6] Kelly, Jacob. ‘Learning Differential Equations that are Easy to Solve’. CoRR abs/2007.04504270

(2020): n. pag. Web.271

[7] Dupont, Emilien, Arnaud Doucet, & Yee Whye Teh. ‘Augmented Neural ODEs’. 2019. Web.272

https://arxiv.org/abs/1904.01681273

[8] Massaroli, Stefano et al. ‘Dissecting Neural ODEs’. 2020. Web. https://arxiv.org/abs/274

2002.08071275

15

https://www.kaggle.com/datasets/shayanfazeli/heartbeat
https://github.com/abaietto/neural_ode_classification
https://doi.org/10.48550/ARXIV.1806.07366
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/2002.08071
https://arxiv.org/abs/2002.08071
https://arxiv.org/abs/2002.08071

Appendix276

6.1 A Discussion on Integration Time Span277

Many Neural ODE implementations, including the MNIST example from the official library torchdif-278

feq, has made the seemingly arbitrary choice of [0, 1] as the solver time span. Since little explanation279

can be found, here describes own interpretation of the choice. We informally argue that, under some280

generous constraints on interal NN, the integration time span can be chosen arbitrarily without change281

in performance.282

Say we have an ODE IVP problem with dx
dt = f(x(t), t) and x0 = x(t = 0), and we want to find283

x(t = 2). Beside integrating f by the interval t ∈ [0, 2], we can integrate a modified ODE by the284

interval [0, 1] and arrive at the same solution by a transformation on the time variable:285

∫ 2

0

f(x(t), t)dt =

∫ 1

0

2f(x(t′), t′)dt′ (6.1)

with t′ = t/2. In general, to change an arbitrary integration span to [0, 1], we have make a linear286

transform to t, t′ = mt+ b, and multiple the derivative function by 1/m. It can be shown that for287

many NNs, if it can model f(x(t), t), it can also model f(x(mt+ b),mt+ b)/m. First, there is the288

linear transformation on the input time; many NN layers already linearly transform their inputs, so289

they can fully express the additional linear transformation on time. The other change is the scaling of290

output by 1/m. This can be achieved if the final layer is linear, i.e. without a non-linear activation291

function, with the weight and bias scaled accordingly.292

Our NODE architecture indeed satisfies both requirements: the NODE block does not take time293

as an input, thus doesn’t require the first layers to be linear, and the final layer is a convolution294

without nonlinear activation. Thus, setting the time span to [0, 1] should not impact expressibility or295

performance. Some models however does not, such as the torchdiffeq’s MNIST model. Regardless, it296

can still be argued that most neural network, with linear or nonlinear layers, are flexible enough to297

approximate such a linear transformation in time variable, such that using the time span [0, 1] make298

no significant difference in performance.299

It is worth mentioning that our AD NODE implementation utilizes this transformation of integral300

bounds to realize adaptive depth. To train the AD models in batches would require ODE solver to301

integrate parts of the congregated, high-dimension arrays by different time spans, which our used302

library does not support. Alternatively, training AD model by each single case is impractical in time303

cost. Our implementation instead factors the derivative array, output of the internal network, by304

batched array multiplication, which has CUDA support and can be done efficiently. The solver then305

integrates the modified derivatives on t ∈ [0, 1]. This trick only works because our NODE block is306

autonomous, i.e. the internal derivative network does not take a time variable input.307

16

	Neural Network and ResNet
	Neural ODE
	Implementation Example
	Electrocardiogram Dataset
	Network Architecture
	Characteristics and Comparison Between ResNet and NODE

	Extensions of Neural ODE
	Augmented Neural ODEs
	Adaptive-Depth Neural ODEs

	Experiments on the ECG Dataset
	Implementation Details
	Results and Discussion

	Conclusion
	A Discussion on Integration Time Span

