
Neural Ordinary Differential Equations

Jimmy Chen and Laurie Luo
Math 179, Harvey Mudd College

jimchen@hmc.edu, hluo@hmc.edu

Abstract

In this paper, we introduce the concepts and implementation details of a newer class1

of machine learning algorithms, Neural Ordinary Differential Equation (NODE).2

We replicate and discuss a specific implementation that compares ResNet and3

NODE, which uses the electrocardiogram (ECG) dataset from the MIT Beth Israel4

Hospital (BIH). We successfully replicated the result of the original authors of the5

implementation, which demonstrates the advantages and disadvantages of NODE.6

1 Neural Network and ResNet7

Neural Networks (NN) are a family of algorithms that models over datasets and provides predictions.8

They play a central role in modern machine learning process, particularly deep learning.9

For example, in a classical data modelling problem, we have N pairs of data point X =10

(x1,y1), (x2,y2), ..., (xN ,xN )), where xi ∈ X is the input domain and yi ∈ Y is the output11

domain, and some sort of relationship exists between the two variables:12

X ? Y13

We would like to utilize the existing dataset and make prediction of the output y∗ giving a new data14

point x∗. The highly flexible NN can be iteratively trained on the dataset, ultimately describing the15

dataset with accuracy. Using an NN turns the classical situation into the situation below:16

X ? Y

NeuralNetwork

17

Internally, a generic NN consists of several layers of neurons, mimicking the way the human brain18

operates. In this sense, neural networks refer to systems of neurons, either organic or artificial in19

nature. Figure 1 is a detailed illustration of common, fully connected neural network. The input data20

xi is first fed into the first layer, where it is transformed by the layer to some intermediate values,21

which are further transformed by the next layer, and so on. In this way, the neural network can be22

viewed as a giant composite function and, thus, the more layers there are, the deeper the network it is.23

For a fully connect layer, the input of each neuron is a weighted summation over the previous values24

with a constant term as bias, and then the result is passed through a scalar activation function, usually25

nonlinear.26

Midterm Project for Math 179 in Harvey Mudd College.



Figure 1: Detailed Illustration of Neural Network

Hence, the number of layers deeply affects the performance of the neural network. Too few layer,27

meaning too few parameters, will cause under-fitting, wile too many layers will cause over-fitting28

(shown in figure 2).29

Figure 2: Underfitting and Overfitting

One class of NNs effectively allows the number of layers to be adaptively optimized for the dataset:30

they are the Residual Neural Networks (ResNet). Whereas regular multi-layer perceptions and many31

other NNs chain layers together linearly through composition only, ResNets introduce shortcuts that32

skip over groups of layers by adding intermediate results from a few layers prior to the current output.33

One can consider a group of layers that has such a shortcut over it as a single residual block (or34

group). For the kth residual block, the output is the addition Resk(xk) + xk, between the processed35

output of the internal layers and the original input.36

xk+1 = ResBlockk(xk) = Resk(xk) + xk, (1.1)

Figure 3: ResNet Block

2



The transition to Neural ODE begins by noting that equation 1.1 bears some resemblance to an37

unrelated concept. If we treat the internal process Resk(xk) as giving the derivative of a unified38

"variable" x at "time" k, then the equation effectively represents the Euler method for solving the39

ODE (with unit time step)40

dx

dt

∣∣∣∣
t=k

= Res(xk, k) (1.2)

where Res(xk, k) = Resk(xk) represents Resk at all ks.41

Figure 4

Figure 4 further illustrates the correlation between ResNet and the Euler method. Four ResNet blocks42

B0...3 are shown, with internal networks NN0...3 and shortcuts as arrow from each input to output.43

Now we can reinterpret each the network output as the derivative to some function of t, shown as44

the dark curved line. Take the first step for example. For the first block B0, its internal network NN045

takes in the initial point of x, x0 at t0, and produces some x′(t0). To approximate the value of the46

function at the next time point t1, we multiply it by the time step ∆t which is assumed to be unit,47

so x′(t0) = ∆x0, the change in value in this time step. The final estimate is the sum of the original48

x0 and the change ∆x0. In the ResNet block, this is the sum of the network output and the original49

input through the shortcut. The step is then repeated three more times by different ResNet blocks,50

each corresponding to a specific time point.51

3



This does assume that the intermediate results xk to share the same dimensions, but the assumption is52

less important than our purpose of illustration. The point is this: if ResNet approximates an ODE53

solution by the Euler method, then we can naturally extended ResNet by considering other, and better,54

integration methods.55

4



2 Neural ODE56

Neural ODEs (NODE) are a continuous re-imagination of ResNet. They model curves in arbitrary57

dimensions as solutions to first order ODEs, and are thus inherently applicable to time series. When58

ResNet is thought as the Euler method, each residual block corresponds to one discrete time step in59

the Euler method: the kth group takes the previous result xk and gives the derivative of x at time tk.60

Note that each residual group is only responsible for a single time point. Neural ODE instead uses a61

single NN to produce all derivatives by taking the time point as explicit input:62

dx

dt
= NNNODE(x, t). (2.1)

It follows that the solution to this ODE is the integral over time:63

x(t) =

∫
NNNODE(x, t)dt (2.2)

From a computational standpoint, this integral can be approximated with any numerical integration64

methods.65

Figure 5

Figure 5 illustrates the operation of a Neural ODE. A single neural network produces all derivatives66

of the ODE it models: at each time point t, it takes in t and the current value x, and the output of67

the NN is used as the derivative x′(t). The network parameters remain constant regardless of time,68

5



while the input t varies. This contrasts with ResNet as the Euler method, which uses entirely different69

networks for different time points.70

As Neural ODEs are flexible in integration methods, integration points, the time points at which the71

derivative is evaluated, can be freely chosen in principle, both in amount and in value. In practice,72

this can reflect in adaptive strategies in choosing integration points such as reducing the step size73

when derivatives are large in magnitude.74

Such generality has immediate advantages. Numerical methods for solving ODEs has been a rich75

and much-explored field, with optimized methods for accuracy, speed, and specific ODE types, most76

significantly superior to the Euler method. For instance, a number of fourth-order Runge–Kutta77

methods exist where the accumulated error that scales with the fourth power of step size, whereas the78

error the Euler method scales linearly with step size.79

Neural ODE also opens up the flexibility of choosing algorithms and of balancing between accuracy80

and speed. As a ResNet block corresponds to a single time step of the Euler method, the number81

of steps taken is tied to the ResNet’s structure, namely the depth of the network. For Neural ODEs82

the number of steps is variable and controllable, which effectively establishes flexible depth. Larger83

network depth makes it more expressible and accuracy while a smaller depth cuts the time and84

resource cost of iterative computation. Additionally, for ResNet the memory cost of storing layers85

of parameters scales with depth, while Neural ODE has a constant memory profile. Finally, Neural86

ODES can be evaluated at any point along the solution curve, which is ideal for modeling data with87

irregular time point.88

6



3 Implementation Example89

In this section we replicate the result an implementation given in https://github.com/abaietto/90

neural_ode_classification. The author of this implementation compares the accuracy, time91

cost and memory cost of similarly structured ResNet and NODE models in the context of a supervised92

learning task, namely the classification of an ECG signal.93

3.1 Electrocardiogram Dataset94

This implementation uses MIT Beth Israel Hospital (BIH) electrocardiogram (ECG) dataset. The95

data is obtained from Kaggle [1], containing about 110,000 labeled data points about heartbeat96

classification. Each sample is annotated into the following five categories: normal (0), supraventricular97

premature beat (1), premature ventricular contraction (2), fusion of ventricular and normal beat (3),98

and finally unclassifiable beat (4). The ECGs were recorded at a frequency of 360 Hz. Thus,99

each sample was taken over 0.52 seconds since there are 187 measurements per sample. To better100

understand each heartbeat type, we obtained examples for each category, as shown below.101

Figure 6: Heartbeat Example of Category 0

Figure 7: Heartbeat Example of Category 1

7

https://github.com/abaietto/neural_ode_classification
https://github.com/abaietto/neural_ode_classification
https://github.com/abaietto/neural_ode_classification


Figure 8: Heartbeat Example of Category 2

Figure 9: Heartbeat Example of Category 3

Figure 10: Heartbeat Example of Category 4

From the data, the proportion of each category is shown in Table 1, which shows normal heartbeats102

are the most common category.103

8



Category Proportion
0 0.83
1 0.03
2 0.07
3 0.01
4 0.07

Table 1: Proportion of each category of heartbeat

3.2 Network Architecture104

For the purpose of comparison, the ResNet model and the NODE model here are identical in many105

layers. Each cardiogram sample consists of 187 values. For both models, the first three layers are106

one dimensional convolutions, who together results in 64 channels of time-local series, each now107

with 46 values. For the ResNet, this is followed by six ResNet blocks identical in structure, each108

with two convolutions layers plus normalization. For the NODE, the six blocks of the ResNet are109

replaced by one Neural ODE block, which has an internal NN consisting of two convolutions also110

with normalization. From this point, both models go through a fully connected layer which outputs to111

a size of 5 representing the categorization task.112

Figure 11: Comparison of accuracy between the ResNet and the Neural ODE

3.3 Characteristics and Comparison Between ResNet and NODE113

We are able to fully replicate the results of the original authors. Training each network for 5 epochs,114

the ResNet produced a final accuracy of 0.985 on the training dataset and 0.980 on the test set,115

while the Neural ODE produced 0.982 and 0.979 for training and test respectively. Figure 11 shows116

historical accuracies by epochs. We see that the final accuracies are similar between the two models.117

An advantage of Neural ODEs is demonstrated when we compare the size of the models. Namely,118

while the ResNet contains 182853 parameters, the NODE has only 59333, thus producing the same119

level of accuracy as the ResNet with less than one third of the memory cost. The difference in model120

size is directly reflected in the network structure: the ResNet notably uses 6 residual blocks each121

containing 24832 parameters while the NODE uses one Neural ODE block with 25472 parameters.122

This verifies the aforementioned theoretical advantage of NODE networks in memory.123

The implementation also reflects a potential disadvantage of Neural ODES, namely training and124

evaluation time. For evaluation, the ResNet takes around 9 seconds on our hardware with the test set125

as input while the NODE takes around 70 seconds; for training with the selected optimizer (stochastic126

gradient descent with momentum optimization), the ResNet takes around 1.6 to 1.8 minutes per epoch127

while the NODE spends around 11.7 to 16.6 minutes per. The multiplied time cost of Neural ODEs128

9



has been implicitly noted by several others, namely in [4], [5] and [6] all motivated by efficiency.129

An immediate area for future work are to incorporate these efficiency optimizations to this specific130

dataset.131

10



References132

[1] https://www.kaggle.com/datasets/shayanfazeli/heartbeat133

[2] https://github.com/abaietto/neural_ode_classification134

[3] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary135

Differential Equations. arXiv. https://doi.org/10.48550/ARXIV.1806.07366136

[4] Kidger, Patrick, Ricky T. Q. Chen, Terry J. Lyons. ‘’Hey, that’s not an ODE’: Faster ODE137

Adjoints with 12 Lines of Code’. CoRR abs/2009.09457 (2020): n. pag. Web.138

[5] Bilos, Marin .. ‘Neural Flows: Efficient Alternative to Neural ODEs’. CoRR abs/2110.13040139

(2021): n. pag. Web.140

[6] Kelly, Jacob .. ‘Learning Differential Equations that are Easy to Solve’. CoRR abs/2007.04504141

(2020): n. pag. Web.142

11

https://www.kaggle.com/datasets/shayanfazeli/heartbeat
https://github.com/abaietto/neural_ode_classification
https://doi.org/10.48550/ARXIV.1806.07366

	Neural Network and ResNet
	Neural ODE
	Implementation Example
	Electrocardiogram Dataset
	Network Architecture
	Characteristics and Comparison Between ResNet and NODE


