Mathematics of Big Data, I Lecture 1: Introduction of Big Data & Overview of Big Data Analytics

Weiqing Gu

Professor of Mathematics Director of the Mathematics Clinic

Harvey Mudd College Spring 2019 https://math189sp19.github.io/syllabus.html

https://math189sp19.github.io/

@2018 by Weiqing Gu. All rights reserved

Office: Shan 3420 Email: gu@g.hmc.edu Phone: ext. 1-8929 Office Hours: Wednesday 1:00pm - 2:00pm

Course Meeting:

M, 7:00pm - 9:45pm

Course Location:

Harvey Mudd College Shan 3485

TA/Tutoring Hours: Name: Joseph (Joe) Nunez Email: jbnunez@g.hmc.edu **Tutoring Hours:** (Optional) Monday: TBD in Shan 3485 (discuss in class) Name: Jonathan (Jon) Hayase Email: jhayase@g.hmc.edu Name: Ricky Shapley Email: rshapley@g.hmc.edu **Tutoring Hours: (Optional)** Sunday: 7:00pm - 9:00pm in Shan 3485

Textbook:

All members of the class will be required to obtain the following text:

Kevin Patrick Murphy, *Machine Learning: a Probabilistic Perspective*. MIT Press, 2012.

Grading:

- 5% Reading Summary
- 35% Homework
- 20% Midterm (Project or Exam, TBD)
- 40% Final Project
- [Up to 5% Extra Credit]

Course Requirements and Evaluation:

• Reading Presentations

All readings are compulsory, but some are more compulsory than others.

To encourage the goal of reading active research in the field, we will assign each non-Murphy reading to a group of two students who will write a summary of 1-2 pages to be turned in at the start of class. Each student will do approxiamately two summaries in total. They must be clear and demonstrate that you have read the paper with a high degree of confidence. Credit will be given on a 0-10 scale for each summary. Your summary should be done at a high level, and should focus on the main point of the readings (i.e. avoid complicated math). As long as your summary is reasonable, you will be given full credit.

Homework!

• Homework

The homework is due every week at the beginning of each lecture. There will be two parts for each assignment: math and coding. The homework is split approximately evenly between mathematical analysis and extension of our course material and application of algorithms to real world data. For coding: You are highly recommended to use Python3. For each problem, the starter code and the sample solution are implemented in Python3. All the results and graphs for the sample solutions were produced under Python 3.5.2 under macOS Sierra; different versions of Python or system environment may produce different results. You are also welcome to use Jupyter Notebooks, but the starter code is not provided in notebook format.

<u>Numpy</u> and <u>Pandas</u> are two important python libraries to know for coding assignment for this course. You might also want to look at <u>Matplotlib</u> for generating plots. If you never used these libraries before, make sure you check out the tutorials online before starting the first assignment.

 At the end of each lecture, the head grader will give you some instruction on how to start to write your code and what would be some of the expected challenges for the next coding assignment. Note:

1) When doing the coding problem for each homework set, you are not allowed to use any machine learning algorithms implemented by external libraries, such as LinearRegression in sklearn. However, you may use these algorithms in your final project.

2) Each homework has both pdf and tex versions. To have the tex files successfully compiled, make sure that you have downloaded both <u>macros.tex</u> and <u>hmcpset.cls</u> and put them and the hw tex file under same folder.

If you have any questions with regard to the compilation of the tex files, feel free to ask the grutors for help.

3) For each coding problem, please submit your code to GitHub; please print out any graph or printing statements and submit them with the written part.

• Midterm

The midterm will either be a take-home exam covering all topics seen in the first week of the course or a project where you will apply the methods learned in the first half of the course (TBD).

• Final Project

The final project is the largest component of the course. Each student will discover, explore, and attack a real world problem of your choosing. The detailed description and requirements for the final project can be found under the "Final Project" tab.

• GitHub

As we stated in the course overview, students are expected to become comfortable with Github. Hence, each student is required to create a Github account for coding assignment submission and final project submission. If you already have a Github account, that's perfect. If not, please create a personal Github account and go over the tutorials online. *Note:* Please make sure to send the username of your Github account to TA for homework grading.

Classroom Policies:

• Attendence

Attendence for each lecture is mandatory and is expected of all class members. if you're going to miss a lecture, it is neccessary for you to inform the instructor as soon as possible. You are also responsible for obtaining notes from another class member.

• Devices

You are welcome to use your computer or tablet for note-taking (the PowerPoint slides will also be posted shortly after the lecture for your convenience).

A Big Picture of Mathematics of Big Data, I

Today's Lecture

- Frist: Big data introduction (answer first two questions) Big Data Introduction
 - Where does big data come from?
 - Different ways to describe big data
- Second: Use linear regression as an example to give an overview of big data analytics

Modeling Approaches:

- Statistical calculus
- Geometric analytic
- Probabilistic

Each has its own merit

• Note:

Mathematics of Big Data (in academic) == Big Data Analytics (in industry). First: Introduction of Big Data
Where does big data come from?

Organizations

Machines

People

Data is not new. But the scale has been changed! The way how people using data has been transformed!

Types of big data

- 1. Structured data (e.g. often Generated by organizations)
- 2. Semi-structured data (e.g. Generated by machine with manual records)
- 3. Unstructured data (often Generated by people)

• What exactly is big data?

- Does "big" here mean "big volume"?
- In fact, there are 5 "V"s to describe big data.
 - Volume (Size)
 - -Velocity (Speed)
 - -Variety (Types)
 - -Veracity (Quality)
 - -Valence (Relationships)

IBM

Second for today: Analytic Approaches

• Use "linear regression" as an example to give an overview of big data analytics

Modeling Approaches: Statistical calculus Geometric analytic Probabilistic Each has its own merit

1. Statistical Calculus Approach (Classical Least Square Approximation)

Spse we have data pts (xi, yi) and want to find the line y=mx+b which best describes the data. 1=mx+b Xi The problem boids down to find m &b. The error between one point and the line is $e_i = y_i - (mx_i + b)$

Our objective is minimizing the total error.

- However, the errors e_i some could be positive and some could be negative. A simple sum of the errors would not work well.
- Can you think about an example why not working well?
- How to fix this problem?
- Instead we consider the following objective or cost function:
- $J(m,b) = \sum (e_i)^2 = \sum (y_i mx_i b)^2$
- Can we use ∑|e_i instead?

Goal: Find m and b to minimize the cost function J

- How?
- Set all partials equal to zero!
- Work out the details with the students on the board.

Obtained solution using Cramer's rule

• Give a linear system:

$$egin{array}{cc} a_1x+b_1y&=oldsymbol{c}_1\ a_2x+b_2y&=oldsymbol{c}_2 \end{array}$$

• Write it into matrix form:

$$egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} c_1 \ c_2 \end{bmatrix}$$

Assume the coefficient matrix is invertible, i.e. the det = $a_1b_2 - b_1a_2$ is nonzero. Then

$$x=rac{egin{bmatrix} oldsymbol{c}_1 & b_1\ oldsymbol{c}_2 & b_2\ egin{aligned} & oldsymbol{c}_1 & b_1\ oldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{c}_1 & b_2\ oldsymbol{a}_1 & b_2 & -b_1 & a_2\ oldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{a}_1 & b_1\ oldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{a}_1 & b_2\ oldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{a}_1 & b_2\ oldsymbol{a}_2\ egin{aligned} & oldsymbol{a}_2\ eldsymbol{a}_2 & b_2\ egin{aligned} & oldsymbol{a}_1 & b_2\ eldsymbol{a}_2\ eldsymbol{a$$

Close formula for Least Square Approximation

Using Cramer's rule, we get solution for m,b:

$$m = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$b = \frac{(\sum_{i=1}^{n} x_i^2) (\sum_{i=1}^{n} y_i) - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} x_i y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} x_i y_i)}$$

But the formula is massy. Next we'll find a compact form of this formula.

Linear Regression

Given some data: $D = \{x_i, y_i\}$

Normal Equation for Least Square Approximation

- i.e. Representing the Least Square Solution in Matrix Form
- Work out the details with the students on the board.
- Recall the product rule:
- f, g: $R \rightarrow R$: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- f, g: $\mathbb{R}^n \rightarrow \mathbb{R}$: $\nabla (f \cdot g) = \nabla f \cdot g + f \cdot \nabla g$
- **f**, **g**: $\mathbb{R}^n \rightarrow \mathbb{R}^n$: $(\mathbf{f} \cdot \mathbf{g})' = \mathbf{f}' \cdot \mathbf{g} + \mathbf{f} \cdot \mathbf{g}'$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Homework problem

• Given 4 points as below:

(0,1), (2,3), (3,6), (4,5)

a) Find y = mx + b based on Cramer's rule.

• Hint:

- b) Use the normal formula to find the solution and compare it with that of a).
- c) Plot the data points, and draw y = mx +b.
- d) (All by coding) Find another 100 points near the line y = mx + b. Then find the least square approxim'n again & plot both the data points & the new line.

How about fit data by a plane?

Get the same close solution by normal equation!

 Can you imagine what other cases you would get the same kind of solution?

2. Geometric Analytic Approach (Geometric Least Square)

• Work out the details with the students on the board.

Assume a linear model

This is equivalent to

$$y_i = \sum_j w_j x_{ij} + \mathcal{N}(0, \sigma^2) = \mathbf{x}_i \mathbf{w} + \mathcal{N}(0, \sigma^2)$$

Key in *Geometric* Least Square Approximation *Geometrically you can see the solution!*

$$\mathbf{w}_{MLE} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Again we get the same solution!

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Q: But what's wrong if we use Cramer's rule to solve it?

Or directly use the formula by finding the inverse $X^T X$?

3. Probabilistic Approach (Maximal Likelihood)

• Work out the details with the students on the board.

Recall Gaussian distribution

The red curve is the standard normal distribution

Notation	$\mathcal{N}(\mu,\sigma^2)$					
Parameters	$\mu \in \mathbb{R}$ = mean (location)					
	$\sigma^2 > 0$ = variance (squared scale)					
Support	$x\in \mathbb{R}$					
PDF	$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$					

Expected Value

Let X be a random variable with a finite number of finite outcomes x_1 , x_2 , ..., x_k occurring with probabilities p_1 , p_2 , ..., p_k , respectively. The **expectation** of X is defined as

$$\mathrm{E}[X]=\sum_{i=1}^k x_i\,p_i=x_1p_1+x_2p_2+\dots+x_kp_k.$$

Since all probabilities p_i add up to 1 (

 $p_1 + p_2 + \cdots + p_k = 1$), the expected value is the weighted average, with p_i 's being the weights.

Special case: Average

If all outcomes x_i are equiprobable (that is, $p_1 = p_2 = \cdots = p_k$), then the weighted average turns into the simple average. This is intuitive: the expected value of a random variable is the average of all values it can take; thus the expected value is what one expects to happen *on average*.

Continuous case

If X is a random variable whose cumulative distribution function admits a density f(x), then the expected value is defined as the following Lebesgue integral:

$$\mathrm{E}[X] = \int_{\mathbb{R}} x f(x) \, dx.$$

The variance of a random variable X is the expected value of the squared deviation from the mean of X, $\mu = E[X]$: $Var(X) = E[(X - \mu)^2].$

Example of samples from two populations with the same mean but \Box different variances. The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50).

$egin{aligned} & \mathrm{Var}(X) = \mathrm{E}ig[(X - \mathrm{E}[X])^2ig] \ &= \mathrm{E}ig[X^2 - 2X\,\mathrm{E}[X] + \mathrm{E}[X]^2ig] \ &= \mathrm{E}ig[X^2ig] - 2\,\mathrm{E}[X]\,\mathrm{E}[X] + \mathrm{E}[X]^2 \ &= \mathrm{E}ig[X^2ig] - \mathrm{E}[X]\,\mathrm{E}[X]\,\mathrm{E}[X] + \mathrm{E}[X]^2 \end{aligned}$

Continuous case

If the random variable X represents samples generated by a continuous distribution with probability density function f(x),

$$\operatorname{Var}(X) = \sigma^2 = \int (x - \mu)^2 f(x) \, dx$$

Visualize Bayes' Theorem

Viewed as a function of \theta.

• Back up slides

You must keep your mind clear what type of function your are dealing with!

	A	Big	Picture	of	Derivatives	(By Prof. Gu)
Type of func	s Type of Derivatives	Notations	Pictures	Meanings	Remarks	formulas
0	Derivative of f(x) at x.	df dr erf'(x)	3 (x ₀ , f(x ₀))	slope at (xo,f(xo)) of the curve	neghtye	H=f(x0)+f(x0)(x-x0)
or R ->IR	Partial derivatives w.r.t x ory	· · · ·	(-27)	fx = slope of graph in x- direction	similarly, fy=slope of graph in y- direction	(If exists) The tangent plane at (a,b,f(a,b)): Set(a,b)+(a,b)(ma)
-	Higher order partials :	alt of the	A	fxx= concavity in x direction	Txx >0 :	Laplace's egn:
≈ IR*→IR	2 nd partials	at age = fug		(fy)x = rate change of fy as x increase	fyy co:	3x + 3x + 3x + 3x =0
f: ℝ*→ IR or IR ¹¹ → IR	Mixed partials	auf any fyx	fyx=0	fyx=0	In the first picture, as x increases fy increases from neg to the positive and the the	Spse f(x, y) flas continuous 2 ⁵⁴ - and 2 nd partial dening fry = fyx
1:1K→1K	Directional derivative of IR-valued fuman of 2-variable	ゆまもくばつ		Rate change of f in the direction of V.	Any directional derivative is counted	Def f(a) = Vf(a) • ii bii (a unit vector!)
fills	Gradient of real valued function of 2 or 3 variables	र्भ भ(दे)	f(x,y)= xy	Uf(a,b) = u,a Uf(a,b) derection of Stappest ascent. Le. where Diffras	determined by the direction and gradies If S is a surface given by : f(x,y,z)=c Then an equation for tangent plang to Satz	V=1 3x + 1 34 + 4 52
FIRAR	Divergence of a vector field	div(F) = ▼•F	Y S	Measurement of the "net mass low" of F in or nut at a pt.	or div F = rate of expansion per unit volume.	$div \vec{F} = \vec{v} \cdot \vec{F}$ = $\frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \dots + \frac{\partial F_n}{\partial x_n}$
ヹ゠ ヹ゠		curl(Ē) =▼×Ē	Curlesog	tiny twigor Pa wound the axis in begins R-H rule	ddle at x EIR ³ will spin in dir ⁿ of reoror curl F W angular velocity ungular speed ± curl Fp	Curl(F)=VXF

Normal Equation for Least Square Approximation

- i.e. Representing the Least Square Solution in Matrix Form
- Work out the details with the students on the board.
- Recall the product rule:
- f, g: $R \rightarrow R$: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- f, g: $\mathbb{R}^n \rightarrow \mathbb{R}$: $\nabla (f \cdot g) = \nabla f \cdot g + f \cdot \nabla g$
- **f**, **g**: $\mathbb{R}^n \rightarrow \mathbb{R}^n$: $(\mathbf{f} \cdot \mathbf{g})' = \mathbf{f}' \cdot \mathbf{g} + \mathbf{f} \cdot \mathbf{g}'$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Mean

• Arithmetic Mean

The *arithmetic mean* (or simply "mean") of a sample x_1, x_2, \ldots, x_n , usually denoted by \bar{x} , is the sum of the sampled values divided by the number of items in the example

$$ar{x}=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\dots+x_n}{n}$$

• Expected Value:

The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. In this context, it is also known as the expected value. For a discrete probability distribution, the mean is given by $\sum x P(x)$, where the sum is taken over all possible values of the random variable and P(x) is the probability mass function.

Mean of a probability Distribution (Expected Value)

The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. In this context, it is also known as the expected value. For a discrete probability distribution, the mean is given by $\sum x P(x)$, where the sum is taken over all possible values of the random variable and P(x) is the probability mass function.

For a continuous distribution, the mean is $\int_{-\infty}^{\infty} x f(x) dx$, where f(x) is the probability density function.

If the entries in the column vector

$$\mathbf{X} = egin{bmatrix} X_1 \ dots \ X_n \end{bmatrix}$$

are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (*i*, *j*) entry is the covariance

$$\Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}\left[\,(X_i - \mu_i)(X_j - \mu_j)\,
ight] = \operatorname{E}\left[\,X_i X_j\,
ight] - \mu_i \mu_j$$

where the operator E denotes the expected (mean) value of its argument, and

$$\mu_i = \operatorname{E}(X_i)$$

is the expected value of the *i* th entry in the vector **X**.

Covariance Matrix

Note: The covariance matrix is a symmetric matrix. In fact, a covariant matrix is also positive semi-definite.

The inverse of this matrix, Σ^{-1} , if it exists, is the inverse covariance matrix, also known as the concentration matrix or precision matrix.^[1]

