
Mathema'cs	of	Big	Data,	I		
Lecture	10:	Ar'ficial	Neural	Network	and	
Graph	Techniques	in	Big	Data	Analysis	

	
		
	

Weiqing	Gu	
Professor	of	Mathema-cs	

Director	of	the	Mathema-cs	Clinic	
	

Harvey	Mudd	College	
Summer	2017	

	
	

@2017	by	Weiqing	Gu.		All	rights	reserved	



Today’s	Topics	
•  Ar'ficial	Neural	Network	
•  Graphical	Modeling	in	Machine	Learning	
–  Page	Rank	
– Graph	data	representa'ons	
– Markov	Chain	
–  Laplacian	Matrix		
– Usage	of	Spectral	(Eigenvalue-Eigenvector)	
informa'on.	

•  Directed	Graphical	Models	(Bayesian	Networks)	
•  Plate	Nota'on	(only	if	)me	permits)	
– Naive	Bayes	as	a	Graphical	Model	
–  LDA		



Today’s	Topics	



An	Ar-ficial	Neural	Network	tries	to	
mimic	some	basic	func-ons	of	a	brain.			
A	human	brain	has	100	billion	cells,	

called	neurons.	



Neurons	are	connected	each	other	through	
pathways	that	transmit	electrical	signals.	These	
connec-ons	give	neurons	the	ability	to	send	and	

receive	electrical	impulse	which	in	turn	are	
responsible	for	the	brain	func-on	on	large	scale.			



Key:	We	can	represent	each	neuron	as	a	math	func-on.	It	has	inputs	
and	outputs.		When	it	receives	electrical	impulses	from	a	cell	it	sends	it	
to	other	cells	it’s	connected	to.	So	a	neural	network	is	just	an	aRempt	
to	make	the	computers	model	the	brain	of	reasoning.	If	computers	

were	more	like	the	brain	they	could	be	good	at	some	of	things	human	
are	good	at	such	as	paRern	recogni-on.		A	neural	network	simulated	a	
collec-ons	of	neurons	just	as	they	do	in	the	brain.		These	simulated	
neurons	take	input	and	gives	outputs	through	their	connec-ons.		

F(x)	



x1	

x2	



Let’s	see	an	Example	

•  Work	out	mathema-cs	details	with	students	
on	the	board	and	see	the	code	in	the	
following	slides.	



There	are	lots	of	machine	algorithms	
for	making	predic'on	

•  Regression	methods	
•  Support	Vector	Machine	
•  ……	
•  Ar-ficial	Neural	Network				ANN	



Code	an	ANN	example	



Hyper	Parameters	determines	the	
structure	of	an	ANN!	



ANN	uses	a	smooth	func-on	such	as	
sigmoid	func-on	to	make	the	

differen-a-on	possible.	



When	a	Sigmoid	func-on	applies	to	a	
matrix	in	ANN,	it	applies	to	each	entry	

of	the	matrix.	



Forward	Propagate	inputs	through	network	













Gradient	Descent	Method	



Today’s	Topics	



What	happens	when	you	Google	
Michael	Jackson?	



Have	you	ever	wondered…	
•  Why	all	the	links	on	that	page	talk	about	the	Pop	star	
Michael	Jackson	instead	of	hundreds	of	other	Michael	
Jackson	who	may	be		
–  a	taxi	driver,	
–  an	architect,	
–  or	an	Engineer?	

•  The	reason	is	that	Google	has		a	way	of	scoring	pages,	
and	the	pages	are	presented	from	the	most	
important	one	(with	highest	score)	as	the	first	page.	

•  This	is	called	“PageRank”.			
•  Here	“page”	indicate	the	pages	on	the	web	as	well	as	
the	last	name	of	one	of	the	funders	of	Google:	Larry	
Page.		



Mathema'cally,	Web	is	a	graph!	
Web	=	the	set	of	pages	with	links	

between	pages	
	•  The	Key	idea	in	the	graph	theory	is	

represent	a	graph	as	a	matrix.	
•  Then	some	how	make	it	to	be	symmetric.	
•  Then	decompose	it	by	using	the	method	

of		eigenvalues	and	eigenvectors.		
•  Understand	the	meaning	of	the	

eigenvalues	and	eigenvectors	related	to	
the	original	graph.	



•  Work	out	details	with	the	students	on	the	
board:	

•  Graph	representa-ons	as	data	
•  Adjacency	matrix	
•  The	Laplacian	matrix	of	a	graph	
•  Usage	of	Spectral	(Eigenvalue-Eigenvector)	
informa-on.	



Famous	example	of	using	Graph	
Techniques	in	Large	Data:	PageRank	

Page	C	has	a	
higher	PageRank	
than	Page	E,	even	
though	there	are	
fewer	links	to	C;	
the	one	link	to	C	
comes	from	an	
important	page	
and	hence	is	of	
high	value.	

Mathema'cal	PageRanks	for	a	simple	network,	expressed	as	percentages.		
(Google	uses	a	logarithmic	scale.)		



What	is	a	graph	and	how	to	represent	
it	mathema'cally?	

Labeled	graph	 Adjacency	matrix	



Scalable	Algorithm	





Graph	Representa'on		
We	"translate"	the	picture	into	a	directed	
graph	with	4	nodes,	one	for	each	web	site.	
When	web	site	i	references	j,	we	add	a	
directed	edge	between	node	i	and	node	j	
in	the	graph.	For	the	purpose	of	
compu-ng	their	page	rank,	we	ignore	any	
naviga-onal	links	such	as	back,	next	
buRons,	as	we	only	care	about	the	
connec-ons	between	different	web	sites.	
For	instance,	Page1	links	to	all	of	the	
other	pages,	so	node	1	in	the	graph	will	
have	outgoing	edges	to	all	of	the	other	
nodes.	Page3	has	only	one	link,	to	Page	1,	
therefore	node	3	will	have	one	outgoing	
edge	to	node	1.	Aier	analyzing	each	web	
page,	we	get	the	graph:	



a	Transi'on	Matrix!		
Normalize	each	column	of	the	adjacency	matrix,	we	obtain	

•  Usually,	each	page	transfer	
evenly	its	importance	to	the	
pages	that	it	links	to.	Node	1	has	
3	outgoing	edges,	so	it	will	pass	
on	1/3	of	its	importance	to	each	
of	the	other	3	nodes.		

•  Node	3	has	only	one	outgoing	
edge,	so	it	will	pass	on	all	of	its	
importance	to	node	1.	

•  	In	general,	if	a	node	has	k	
outgoing	edges,	it	will	pass	on		
of	its	importance	to	each	of	the	
nodes	that	it	links	to.		

•  We	then	assigning	weights	to	
each	edge.	



Dynamical	systems	point	of	view	
Suppose	that	ini-ally	the	importance	is	uniformly	distributed	among	the	4	nodes,	
each	gelng	¼.	Denote	by	v	the	ini-al	rank	vector,	having	all	entries	equal	to	¼.	
Each	incoming	link	increases	the	importance	of	a	web	page,	so	at	step	1,	we	
update	the	rank	of	each	page	by	adding	to	the	current	value	the	importance	of	
the	incoming	links.	This	is	the	same	as	mul-plying	the	matrix	A	with	v	.	At	step	1,	
the	new	importance	vector	is	v1	=	Av.	We	can	iterate	the	process,	thus	at	step	2,	
the	updated	importance	vector	is	v2	=	A(Av)	=	A2v.	Numeric	computa-ons	give:	



PageRank	Vector	as		
limit	of	Akv	as	k	tends	to	infinity	

We	no-ce	that	the	
sequences	of	iterates	v,	
Av,	...,	Akv	tends	to	the	
equilibrium	value:	

We	call	this	the		
PageRank	vector		
of	our	web	graph.	



Linear	algebra	point	of	view	
	Let	us	denote	by	x1,	x2,	x3,	and	x4	the	importance	of	the	four	

pages.	Analyzing	the	situa-on	at	each	node	we	get	the	system:	

I.e.	X	is	an	eigenvector	of	A	associ.	w/	eigenvalue	1.	

X	A	 X	



The	Page	Rank	Vector	is	an	eigenvector	
of	A	associated	to	eigenvalue	1.	

•  If	we	solve	find	the	eigenvector	sa-sfying		
•  AX	=	1X,	we	get			

Here	c	is	a	constant.	

We	choose	v*	to	be	
the	unique		
eigenvector	with	the	
sum	of	all	entries	
equal	to	1.	

Same	as	the	page	rank	vector.	



Probabilis'c	point	of	view:	
	•  Since	the	importance	of	a	web	page	is	measured	by	its	popularity	(how	many	

incoming	links	it	has),	we	can	view	the	importance	of	page	i	as	the	probability	
that	a	random	surfer	on	the	Internet	that	opens	a	browser	to	any	page	and	
starts	following	hyperlinks,	visits	the	page	i.	We	can	interpret	the	weights	we	
assigned	to	the	edges	of	the	graph	in	a	probabilis-c	way:		

•  A	random	surfer	that	is	currently	viewing	web	page	2,	has	½	probability	to	go	to	
page	3,	and	½	probability	to	go	to	page	4.		

•  We	can	model	the	process	as	a	random	walk	on	graphs.		
•  Each	page	has	equal	probability	¼	to	be	chosen	as	a	star-ng	point.	So,	the	

ini-al	probability	distribu-on	is	given	by	the	column	vector	[¼	¼	¼	¼]t.		
•  The	probability	that	page	i	will	be	visited	aier	one	step	is	equal	to	Ax,	and	so	

on.		
•  The	probability	that	page	i	will	be	visited	aier	k	steps	is	equal	to	Akx.		
•  The	sequence	Ax,	A2x,	A3x,	...,	Akx,	...	converges	in	this	case	to	a	unique	

probabilis-c	vector	v*.		
•  In	this	context	v*	is	called	the	sta-onary	distribu-on	and	it	will	be	our	Page	

Rank	vector.		
•  Moreover,	the	ith	entry	in	the	vector	v*	is	simply	the	probability	that	at	each	

moment	a	random	surfer	visits	page	i.		
•  The	computa-ons	are	iden-cal	to	the	ones	we	did	in	the	dynamical	systems	

interpreta-on,	only	the	meaning	we	aRribute	to	each	step	being	slightly	
different.	



Discussion	
•  The	Page	Rank	vector	v*	we	have	computed	

by	different	methods,	indicates	that	page	1	
is	the	most	relevant	page.	

•  This	might	seem	surprising	since	page	1	has	
2	backlinks,	while	page	3	has	3	backlinks.	

•  If	we	take	a	look	at	the	graph,	we	see	that	
node	3	has	only	one	outgoing	edge	to	node	
1,	so	it	transfers	all	its	importance	to	node	1.	

•  Equivalently,	once	a	web	surfer	that	only	
follows	hyperlinks	visits	page	3,	he	can	only	
go	to	page	1.	

•  No-ce	also	how	the	rank	of	each	page	is	not	
trivially	just	the	weighted	sum	of	the	edges	
that	enter	the	node.		

•  Intui-vely,	at	step	1,	one	node	receives	an	
importance	vote	from	its	direct	neighbors,	
at	step	2	from	the	neighbors	of	its	
neighbors,	and	so	on.	



Subtle'es	and	Issues	
1.	Nodes	with	no	outgoing	edges	(dangling	nodes)	

	

So	in	this	case	the	rank	of	every	page	is	0.	This	is	counterintui-ve,	as	
page	3	has	2	incoming	links,	so	it	must	have	some	importance!	

We	itera-vely	compute	the	rank	of	
the	3	pages:	



Subtle'es	and	Issues	
2.	Disconnected	components	

A	random	surfer	that	starts	in	the	first	connected	component	
has	no	way	of	gelng	to	web	page	5	since	the	nodes	1	and	2	
have	no	links	to	node	5	that	he	can	follow.	

are	both	eigenvectors	corresponding	to	the	
eigenvalue	1,	and	they	are	not	just	trivially	
one	the	a	scalar	mul-ple	of	the	other.		



How	to	solve	the	above	problems?	

•  So,	both	in	theory	and	in	prac-ce,	the	nota-on	of	
ranking	pages	from	the	first	connected	
component	rela-ve	to	the	ones	from	the	second	
connected	component	is	ambiguous.	

•  The	web	is	very	heterogeneous	by	its	nature,	and	
certainly	huge,	so	we	do	not	expect	its	graph	to	
be	connected.	

•  	Likewise,	there	will	be	pages	that	are	plain	
descrip-ve	and	contain	no	outgoing	links.		

•  We	need	a	non	ambiguous	meaning	of	the	rank	
of	a	page,	for	any	directed	Web	graph	with	n	
nodes.	



The	solu'on	of	Page	and	Brin	
(The	founders	of	Google.Inc)	

	•  In	order	to	overcome	these	problems,	fix	a	
posi-ve	constant	p	between	0	and	1,	which	
we	call	the	damping	factor	(a	typical	value	for	
p	is	0.15).		

•  Define	the	Page	Rank	matrix	(also	known	as	
the	Google	matrix)	of	the	graph	by		PageRank	
matrix		

•  where		



Characteris'cs	of	Googe	PageRank	

•  M	remains	a	column	stochas-c	matrix.	
•  M	has	only	posi-ve	entries	
•  Homework:	Prove	above	factors	
•  So	what?	
•  These	characteris-cs		guarantees	that	M	has	a	
unique	dominant	eigenvalue	(=	1)	and	its	
eigenvectors	are	unique	(aier	normalize	it)	by	
Perron-Frobenius	Theorem.				



•  The	matrix	M	models	the	random	surfer	model	as	follows:	
most	of	the	-me,	a	surfer	will	follow	links	from	a	page:	
from	a	page	i	the	surfer	will	follow	the	outgoing	links	and	
move	on	to	one	of	the	neighbors	of	i.	A	smaller,	but	
posi-ve	percentage	of	the	-me,	the	surfer	will	dump	the	
current	page	and	choose	arbitrarily	a	different	page	from	
the	web	and	"teleport"	there.	The	damping	factor	p	reflects	
the	probability	that	the	surfer	quits	the	current	page	and	
"teleports"	to	a	new	one.	Since	he/she	can	teleport	to	any	
web	page,	each	page	has			probability	to	be	chosen.	This	
jus-fies	the	structure	of	the	matrix	B.	

•  Intui-vely,	the	matrix	M	"connects"	the	graph	and	gets	rid	
of	the	dangling	nodes.	A	node	with	no	outgoing	edges	has	
now		probability	to	move	to	any	other	node.		



Perron-Frobenius	Theorem	

•  If	M	is	a	posi-ve,	column	stochas-c	matrix,	then:	
•  1	is	an	eigenvalue	of	mul-plicity	one.	
•  1	is	the	largest	eigenvalue:	all	the	other	
eigenvalues	have	absolute	value	smaller	than	1.	

•  The	eigenvectors	corresponding	to	the	
eigenvalue	1	have	either	only	posi-ve	entries	or	
only	nega-ve	entries.		

•  In	par-cular,	for	the	eigenvalue	1	there	exists	a	
unique	eigenvector	with	the	sum	of	its	entries	
equal	to	1.	



Power	Method	Convergence	Theorem	

•  Let	M	be	a	posi-ve,	column	stochas-c	n	×	n	
matrix.		

•  Denote	by	v*	its	probabilis-c	eigenvector	
corresponding	to	the	eigenvalue	1.		

•  Let	z	be	the	column	vector	with	all	entries	
equal	to	1/n.		

•  Then	the	sequence	z,	Mz,	...,	Mkz	converges	to	
the	vector	v*.	



Why	does	PageRank	method	work?		

•  Fact: 	The	PageRank	vector	for	a	web	graph	
with	transi-on	matrix	A,	and	damping	factor	
p,	is	the	unique	probabilis-c	eigenvector	of	
the	matrix	M,	corresponding	to	the	eigenvalue	
1.	



Today’s	Topics	



Markov	Chain	

Transi-on	Matrix:	



Stochas'c	Matrix	=	probability	matrix	
=	transi-on	matrix	=	Markov	matrix	

	•  A		stochas-c	matrix	is	a	matrix	used	to	describe	the	
transi-ons	of	a	Markov	chain.	Each	of	its	entries	is	
a	nonnega-ve	real	number	represen-ng	a	
probability.		

•  There	are	several	different	defini-ons	and	types	of	
stochas-c	matrices:	
– A	right	stochas-c	matrix	is	a	real	square	matrix,	with	
each	row	summing	to	1.	

– A	lei	stochas-c	matrix	is	a	real	square	matrix,	with	each	
column	summing	to	1.	

– A	doubly	stochas-c	matrix	is	a	square	matrix	of	
nonnega-ve	real	numbers	with	each	row	and	column	
summing	to	1.	



•  The	state	space	{1	=	bull,	2	=	bear,	3	=	stagnant}		
•  The	distribu-on	over	states	can	be	wriRen	as	a	
stochas-c	row	vector	x	with	the	rela-on	

		
•  So	if	at	-me	n	the	system	is	in	state	x(n),	then	three	
-me	periods	later,	at	-me	n	+	3	the	distribu-on	is	



In	par-cular,	if	at	-me	n	the	system	is	in	state	2	
(bear),	then	at	-me	n	+	3	the	distribu-on	is:	



Using	the	transi-on	matrix	it	is	possible	to	calculate,	for	example,	
the	long-term	frac-on	of	weeks	during	which	the	market	is	
stagnant,	or	the	average	number	of	weeks	it	will	take	to	go	from	a	
stagnant	to	a	bull	market.	Using	the	transi-on	probabili-es,	the	
steady-state	probabili-es	indicate	that	62.5%	of	weeks	will	be	in	a	
bull	market,	31.25%	of	weeks	will	be	in	a	bear	market	and	6.25%	of	
weeks	will	be	stagnant,	since:	



Today’s	Topics	



Laplacian	Matrix	
•  Given	a	simple	graph	G	with	n	ver-ces,	its	
Laplacian	matrix	is	defined	as		

										L	=	D	–	A,	
where	D	is	the	degree	matrix	and	A	is	the	adjacency	
matrix	of	the	graph.		
Since	G	is	a	simple	graph,	A	only	contains	1s	or	0s	
and	its	diagonal	elements	are	all	0s.		
•  No-ce	L	is	symmetric,	so	there	exits	a	matrix	of	
same	size	which	is	orthogonal	so	that	PtLP	=	D,	
where	D	is	diagonal	matrix	with	diagonal	
elements	are	eigenvalues	of	L.	



Example	



Today’s	Topics	



Two	most	important	Proper'es:	Assume	the	
eigenvalues	of	L	is	arranged	at		

•  The	number	of	connected	components	in	the	
graph	is	the	algebraic	mul'plicity	of	the	0	
eigenvalue,	i.e.	the	dimension	of	the	
nullspace	of	the	Laplacian.	

•  The	second	smallest	eigenvalue	of	L	is	the	
approximates	the	sparsest	cut	of	a	graph.	

[There	is	a	name	for	the	second	smallet	
eigenvalue:	algebraic	connec-vity	(or	Fiedler	
value)	of	G.]	

	



Other	proper-es	of	Laplacian	Matrix		
•  L	is	posi-ve	semi-definite,	i.e.	all	the	
eigenvalues	are	≥	0.	(We	know	L	is	symmetric	
and	diagonally	dominant.)	

•  Every	row	sum	and	column	sum	of	L	is	zero.	
This	implies:		
	

•  Laplacian	matrix	is	singular.	
•  And	more.	



Today’s	Topics	



	An	Example	of	Bayesian	Network	
•  	Bayesian	network	
•  =	Bayes	network		
•  =		belief	network		
•  =	Bayes(ian)	model	
•  =	probabilis-c	

directed	acyclic	
graphical	model	is	a	
probabilis-c	graphical	
model	(a	type	of	
sta-s-cal	model)	that	
represents	a	set	of	
random	variables	and	
their	condi-onal	
dependencies	via	a	
directed	acyclic	graph	
(DAG).	

Rain	influences	whether	the	sprinkler	
is	ac-vated,	and	both	rain	and	the	

sprinkler	influence	whether	the	grass	is	
wet.	

A	simple	Bayesian	network	



A	simple	Bayesian	Network	with	
condi'onal	probability	tables	







Today’s	Topics	



Plate	Nota'on	of	
Naïve	Bayes	

To	maximize	this	product,	we	take	log	of	it	



Plate	Nota'on	represen'ng	the	LDA	model	



Vir-cal	way	to	see	it	



A	Bayesian	network	that	models	how	documents	in	a	corpus	are	topically	related.	

Plate	Nota'on	
Example:	Modeling	topically	related:		

Documents	in	a	corpus,	and	words	in	each	documents.	
	



Plate	Nota'on	
Note:	α	and		β	not	in	any	plate.	 β	is	the	parameter	of	the	uniform	Dirichlet	

prior	on	the	per-topic	word	distribu-on.	

	α	is	the	parameter	of	the	uniform	Dirichlet	
prior	on	the	per-document	topic	distribu-ons	

The	outermost	plate	represents	all	the	
variables	related	to	a	specific	document,	
including					,	the	topic	distribu-on	for	
document	i.	

The	M		indicates	that	the	
variables	inside	are	repeated	M	
-mes,	once	for	each	document.	



The	inner	plate	represents	the	
variables	associated	with	each	of	Ni	
words	in	document	i:	zij	is	the	topic	
for	the	jth	word	in	document	i,	and	
wij	is	the	actual	word	used.	

Plate	Nota'on	

The	N	represents	the	repe--on	of	the	
variables	in	the	inner	plate	Ni	-mes,	once	
for	each	word	in	document	i.		

The	circle	represen-ng	the	
individual	words	is	shaded,	
indica-ng	that	each	wij	is	
observable.	
The	other	circles	are	empty,	
indica-ng	that	the	other	variables	
are	latent	variables.	

The	directed	edges	between	variables	indicate	
dependencies	between	the	variables:	for	
example,	each	wij	depends	zij	and	β.	



Suppose	you	have	the	following	set	of	sentences:	
	
•  I	like	to	eat	broccoli	and	bananas.	
•  I	ate	a	banana	and	spinach	smoothie	for	breakfast.	
•  Chinchillas	and	kiRens	are	cute.	
•  My	sister	adopted	a	kiRen	yesterday.	
•  Look	at	this	cute	hamster	munching	on	a	piece	of	broccoli.	

What	is	latent	Dirichlet	alloca-on?	It’s	a	way	of	automa-cally	discovering	
topics	that	these	sentences	contain.	For	example,	given	these	sentences	and	
asked	for	2	topics,	LDA	might	produce	something	like	

•  Sentences	1	and	2:	100%	Topic	A	
•  Sentences	3	and	4:	100%	Topic	B	
•  Sentence	5:	60%	Topic	A,	40%	Topic	B	
•  Topic	A:	30%	broccoli,	15%	bananas,	10%	breakfast,	10%	munching,	…	(at	

which	point,	you	could	interpret	topic	A	to	be	about	food)	
•  Topic	B:	20%	chinchillas,	20%	kiRens,	20%	cute,	15%	hamster,	…	(at	

which	point,	you	could	interpret	topic	B	to	be	about	cute	animals)	
How does LDA perform this discovery?




LDA	Model	
	LDA	represents	documents	as	mixtures	of	topics	that	spit	out	words	with	

certain	probabili'es.		
It	assumes	that	documents	are	produced	in	the	following	fashion:	when	
wri-ng	each	document,	you	
•  Decide	on	the	number	of	words	N	the	document	will	have	(say,	

according	to	a	Poisson	distribu-on).	
•  Choose	a	topic	mixture	for	the	document	(according	to	a	Dirichlet	

distribu-on	over	a	fixed	set	of	K	topics).	For	example,	assuming	that	we	
have	the	two	food	and	cute	animal	topics	above,	you	might	choose	the	
document	to	consist	of	1/3	food	and	2/3	cute	animals.	

•  Generate	each	word	w_i	in	the	document	by:	
–  First	picking	a	topic	(according	to	the	mul-nomial	distribu-on	that	you	

sampled	above;	for	example,	you	might	pick	the	food	topic	with	1/3	
probability	and	the	cute	animals	topic	with	2/3	probability).	

–  Using	the	topic	to	generate	the	word	itself	(according	to	the	topic’s	
mul-nomial	distribu-on).	For	example,	if	we	selected	the	food	topic,	we	
might	generate	the	word	“broccoli”	with	30%	probability,	“bananas”	with	
15%	probability,	and	so	on.	

Assuming	this	genera've	model	for	a	collec'on	of	documents,	LDA	then	
tries	to	backtrack	from	the	documents	to	find	a	set	of	topics	that	are	
likely	to	have	generated	the	collec'on.	



Example	
		

Let’s	make	an	example.	According	to	the	above	process,	when	genera-ng	
some	par-cular	document	D,	you	might	

•  Pick	5	to	be	the	number	of	words	in	D.	
•  Decide	that	D	will	be	1/2	about	food	and	1/2	about	cute	animals.	
•  Pick	the	first	word	to	come	from	the	food	topic,	which	then	gives	you	

the	word	“broccoli”.	
•  Pick	the	second	word	to	come	from	the	cute	animals	topic,	which	gives	

you	“panda”.	
•  Pick	the	third	word	to	come	from	the	cute	animals	topic,	giving	you	

“adorable”.	
•  Pick	the	fourth	word	to	come	from	the	food	topic,	giving	you	

“cherries”.	
•  Pick	the	fiih	word	to	come	from	the	food	topic,	giving	you	“ea-ng”.	
So	the	document	generated	under	the	LDA	model	will	be	“broccoli	panda	
adorable	cherries	ea-ng”	(note	that	LDA	is	a	bag-of-words	model).	



Learning	
	So	now	suppose	you	have	a	set	of	documents.	You’ve	chosen	some	fixed	number	of	K	topics	to	

discover,	and	want	to	use	LDA	to	learn	the	topic	representa-on	of	each	document	and	the	
words	associated	to	each	topic.	How	do	you	do	this?	One	way	(known	as	collapsed	Gibbs	
sampling)	is	the	following:	
•  Go	through	each	document,	and	randomly	assign	each	word	in	the	document	to	one	of	the	

K	topics.	
•  No-ce	that	this	random	assignment	already	gives	you	both	topic	representa-ons	of	all	the	

documents	and	word	distribu-ons	of	all	the	topics	(albeit	not	very	good	ones).	
•  So	to	improve	on	them,	for	each	document	d…	



Learning	

•  Go	through	each	word	w	in	d…	
						And	for	each	topic	t,	compute	two	things:		

1)	p(topic	t	|	document	d)	=	the	propor-on	of	words	in	document	d	that	are	currently	
assigned	to	topic	t,	and		
2)	p(word	w	|	topic	t)	=	the	propor-on	of	assignments	to	topic	t	over	all	documents	
that	come	from	this	word	w.		
Reassign	w	a	new	topic,	where	we	choose	topic	t	with	probability	p(topic	t	|	document	
d)	*	p(word	w	|	topic	t)	(according	to	our	genera-ve	model,	this	is	essen-ally	the	
probability	that	topic	t	generated	word	w,	so	it	makes	sense	that	we	resample	the	
current	word’s	topic	with	this	probability)		
In	other	words,	in	this	step,	we’re	assuming	that	all	topic	assignments	except	for	the	
current	word	in	ques-on	are	correct,	and	then	upda-ng	the	assignment	of	the	current	
word	using	our	model	of	how	documents	are	generated.	

•  Aier	repea-ng	the	previous	step	a	large	number	of	-mes,	you’ll	eventually	
reach	a	roughly	steady	state	where	your	assignments	are	preRy	good.	So	use	
these	assignments	to	es-mate	the	topic	mixtures	of	each	document	(by	
coun-ng	the	propor-on	of	words	assigned	to	each	topic	within	that	document)	
and	the	words	associated	to	each	topic	(by	coun-ng	the	propor-on	of	words	
assigned	to	each	topic	overall).	


