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Today’s Topics

Artificial Neural Network

Graphical Modeling in Machine Learning
— Page Rank

— Graph data representations

— Markov Chain

— Laplacian Matrix

— Usage of Spectral (Eigenvalue-Eigenvector)
information.

Directed Graphical Models (Bayesian Networks)

Plate Notation (only if time permits)

— Naive Bayes as a Graphical Model
— LDA



Today’s Topics

e Artificial Neural Network



An Artificial Neural Network tries to

mimic some basic functions of a brain.

A human brain has 100 billion cells,
called neurons.




Neurons are connected each other through
pathways that transmit electrical signals. These
connections give neurons the ability to send and

receive electrical impulse which in turn are
responsible for the brain function on Iarﬁe scale.

\




Key: We can represent each neuron as a math function. It has inputs
and outputs. When it receives electrical impulses from a cell it sends it
to other cells it’s connected to. So a neural network is just an attempt

to make the computers model the brain of reasoning. If computers
were more like the brain they could be good at some of things human
are good at such as pattern recognition. A neural network simulated a

collections of neurons just as they do in the brain. These simulated

neurons take input and gives outputs through their connections.
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Let’s see an Example

e Work out mathematics details with students
on the board and see the code in the
following slides.



There are lots of machine algorithms
for making prediction

Regression methods
Support Vector Machine

Artificial Neural Network = ANN



In [1]:

In [2]:

out[2]:

In [3]:

Out[3]:

Code an ANN example
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Hyper Parameters determines the
structure of an ANN!

In [1]: class Neural Network(object):
def init (self):
#Define HyperParameters
self.inputLayerSize = 2
self.outputLayerSize = 1
self.hiddenLayerSize = 3

def forward(self, X):
#Propagate inputs through network




ANN uses a smooth function such as
sigmoid function to make the
differentiation possible.

In [2]: testInput = np.arange(-6,6,0.01)
plot(testInput, sigmoid(testInput), linewidth=2)
grid(1l
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When a Sigmoid function applies to a
matrix in ANN, it applies to each entry
of the matrix.

In [3]: sigmoid(1l)

Out[3]: 0.7310585786300049

In [4]: sigmoid(np.array([-1,0,1]))

out[4]: array([ 0.26894142, 0.5 , 0.73105858])

In [5]: sigmoid(np.random.randn 3,3 )

out[5]: array([[ 0.71205286, 0.53868493, 0.6115578 ],
[ 0.34019709, 0.5402725 , 0.62380767],
[ 0.11294651, 0.33710901, 0.67477125]])

In [ ]: ||




Forward Propagate inputs through network

[1]: class Neural Network(object):
def init_(self):
#Define Hyperparameters
self.inputLayerSize = 2
self.outputLayerSize = 1
self.hiddenLayerSize = 3

#Weights (Parameters)
self.Wl = np.random.randn(self.inputLayerSize, \
self.hiddenLayerSize)
self.W2 = np.random.randn(self.hiddenLayerSize, \
self.outputLayerSize)

def forward(self, X):
#Propagate inputs though network
self.z2 = np.dot(X, self.wWl)
self.a2 = self.sigmoid(self.z2)
self.z3 = np.dot(self.a2, self.w2)
yHat = self.sigmoid(self.z3)
return yHat

def sigmoid(self, z):
#Apply sigmoid activation function to scalar, vector, or
return 1/ l+np.exp(-z) |




In [2]: def sigmoidPrime(z):
#Derivative of Sigmoid Function
return np.exp(-z)/((l+np.exp(-2z))**2)

In [ ]: testValues = np.arange(-5,5,0.01)
plot(testValues, sigmoid(testValues), linewidth=2)
plot(testValues, sigmoidPrime(testValues), linewidth=2)
grid(1)
legend [ 'sigmoid’', 'sigmoidPrime’]

Out[3]: <matplotlib.legend.Legend at 0x1068b25d0>
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In [ ]+ def costFunctionPrime(self, X, y):
#Compute derivative with respect to W1 and W2
self.yHat = self.forward(X)

deltad = np.multiply(-(y-self.yHat), self.sigmoidPrime(self.z3))
dJdWw2 = np.dot(self.a2.T, deltal)
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In [ ]:

def costFunctionPrime(self, X, y):

#Compute derivative with respect to W1 and W2
self.yHat = self.forward(X)

delta3 = np.multiply(-(y-self.yHat), self.sigmoidPrime(self.z3))
dJdw2 = np.dot(self.a2.T, delta3l)

delta2 = np.dot(delta3, self.W2.T)*self.sigmoidPrime(self.z2)
dJdWl = np.dot(X.T, delta2)

return dJdWl, dJdw2




In [2]: NN = Neural Network()
In [3]: costl = NN.costFunction(X,y)

dJdWl, dJdW2 = NN.costFunctionPrime(X,y)

In [4)

In [5]: dJdwl

Out[5]): array([[-0.0071096 , -0.01059837, -0.00094283],
[-0.00172302, -0.00234379, -0.00019984]])

In [6]: dJdw2

Out[6]): array([[-0.0229961 ],
[-0.01631712],
[-0.02079302]])



Gradient Descent Method

In [7]): scalar = 3
NN.W1 NN.Wl + scalar*dJddwl
NN.W2 NN.W2 + scalar*dJdw2
cost2 = NN.costFunction(X,y)

In [8]): print costl, cost2

[ 0.01906658] [ 0.02396064]

In [9]): dJdWl, dJdW2 = NN.costFunctionPrime(X,y)
NN.W1l = NN.Wl - scalar*dJdwl
NN.W2 - scalar*dJdw2

NN.W2
cost3 = NN.costFunction(X,y)

In [10]): print cost2, cost3

[ 0.02396064] [ 0.01773225]

In [ ]:




Today’s Topics

 Graphical Modeling in Machine Learning
— Page Rank
— Graph data representations



What happens when you Google
Michael Jackson?

GO g|e michael jackson

(=

All News Videos Images Books More v Search tools

About 308,000,000 results (0.57 seconds)

Home | Michael Jackson Official Site
www.michaeljackson.com/ v
Sony Music site includes streaming audio and video files, discography, image gallery and competitions.

Michael Jackson - Wikipedia
https://en.wikipedia.org/wiki/Michael_Jackson v

Michael Joseph Jackson (August 29, 1958 — June 25, 2009) was an American singer and
philanthropist. Called the "King of Pop", his contributions to music, ...

Life and career - Death and memorial - Artistry - Legacy and influence

Michael Jackson (@michaeljackson) | Twitter Michael Jackson <
https://twitter.com/michaeljackson )

Singer
1 day ago - View on Twitter 2 days ago - View on Twitter
Today in '93 marked the final show on MJ's 17- Starting tomorrow, Musical.ly will be joining in on
month Dangerous World Tour. The final the #Dangerous25 celebration with a special > Available on
performance was in Mexico City,... “Black or White” event! Download the app!
twitter.com/i/web/status/... m iHeartRadio
Michael Jackson - YouTube P Pandora
https://www.youtube.com/user/michaeljackson v
The Official YouTube Channel of The King of Pop - Michael Jackson. For more info, visit © Tuneln

www.michaeljackson.com.
v~ More music services

In th Michael Joseph Jackson was an American singer and philanthropist.
nthe news Called the "King of Pop", his contributions to music, dance, and fashion

Little Michael Jackson impersonator leaves crowd along with his publicized personal life made him a global figure in popular
culture for over four decades. Wikipedia

speechless
East Coast Radio - 2 days ago Died: June 25, 2009, Holmby Hills, Los Angeles, CA

At just seven he has already mastered some of Michael Jackson's iconic Height: 5' 9"

dance moves.




Have you ever wondered...

Why all the links on that page talk about the Pop star
Michael Jackson instead of hundreds of other Michael
Jackson who may be

— a taxi driver,
— an architect,
— or an Engineer?

The reason is that Google has a way of scoring pages,
and the pages are presented from the most
important one (with highest score) as the first page.

This is called “PageRank”.

Here “page” indicate the pages on the web as well as
the last name of one of the funders of Google: Larry
Page.



Mathematically, Web is a graph!
Web = the set of pages with links
between pages

The Key idea in the graph theory is
represent a graph as a matrix.
Then some how make it to be symmetric.
Then decompose it by using the method
of eigenvalues and eigenvectors.
Understand the meaning of the
eigenvalues and eigenvectors related to
the original graph.



Work out details with the students on the
board:

Graph representations as data
Adjacency matrix
The Laplacian matrix of a graph

Usage of Spectral (Eigenvalue-Eigenvector)
information.



Famous example of using Graph
Techniques in Large Data: PageRank

Page C has a
higher PageRank
than Page E, even
though there are
fewer links to C;
the one link to C
comes from an
iImportant page
and hence is of
high value.

(Google uses a logarithmic scale.)

Mathematical PageRanks for a simple network, expressed as percentages.



What is a graph and how to represent
it mathematically?

Labeled graph Adjacency matrix

21 0 0 1 O
1 01 01 0
01 01 0O
0 01 0 1 1
1 1 01 0 O
0 0 01 0O

Coordinates are 1—6.
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Graph Representation

We "translate" the picture into a directed
graph with 4 nodes, one for each web site.
When web site i references j, we add a

directed edge between node i and node j

in the graph. For the purpose of
computing their page rank, we ignore any
navigational links such as back, next
buttons, as we only care about the
connections between different web sites.

For instance, Pagel links to all of the Y
other pages, so node 1 in the graph will 9
have outgoing edges to all of the other

nodes. Page3 has only one link, to Page 1,
therefore node 3 will have one outgoing
edge to node 1. After analyzing each web
page, we get the graph:



Normalize each column of the adjacency matrix, we obtain

a Transition Matrix!

e Usually, each page transfer
] evenly its importance to the
pages that it links to. Node 1 has
- 3 outgoing edges, so it will pass
| A on 1/3 of its importance to each
- | 1 of the other 3 nodes.
) 3 2« Node 3 has only one outgoing

Y 1 edge, so it will pass on all of its
9 Z importance to node 1.
 Ingeneral, if a node has k

outgoing edges, it will pass on
. of its importance to each of the
nodes that it links to.
* We then assigning weights to
each edge.
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Dynamical systems point of view

Suppose that initially the importance is uniformly distributed among the 4 nodes,
each getting %. Denote by v the initial rank vector, having all entries equal to 7.
Each incoming link increases the importance of a web page, so at step 1, we
update the rank of each page by adding to the current value the importance of
the incoming links. This is the same as multiplying the matrix A with v. At step 1,
the new importance vector is v, = Av. We can iterate the process, thus at step 2,
the updated importance vector is v, = A(Av) = A%v. Numeric computations give:

0.25 0.37 0.37 0.43
0.25 Av - | 0-08 A’v - A (av) - a | 008 _]0-12
0.25 | 0.33 " 0.33 0.27
0.25 0.20 0.20 0.16

0.35 0.39 0.39

AS - | 0-14 Aty o | 0-11 AS. - | 0-13

0.29 |’ 0.29 | 0.28

0.20 0.19 0.19

0.38 0.38 0.38

A6y - | 0-13 AT o - | 0-12 ABo - | 0-12

0.29 |’ 0.29 |’ 0.29

0.19 0.19 0.19



PageRank Vector as
limit of Akv as k tends to infinity

We notice that the
sequences of iterates v,
Av, ..., Akv tends to the

equilibrium value: .
We call this the

1 0.38 / PageRank vector
* 0.12 of our web graph.
0.29
 0.19}




Linear algebra point of view

Let us denote by x,, x,, X5, and x, the importance of the four
pages. Analyzing the situation at each node we get the system:
R ‘:12' iy |
|
X+ 5 X9 + % » 'y l

‘l~ ‘~
a‘h w l\/ —y
|
o.lo—‘wlo—-culo—s —

P~

[y

(S P O P
f~

[ )

-

3 r‘; iy -
‘ | = — I 1 ' | ' i
= () X9 . L2 5
- - ' 4. I3 B L3 2 _
0 B | P4

l.e. X is an eigenvector of A associ. w/ eigenvalue 1.



The Page Rank Vector is an eigenvector
of A associated to eigenvalue 1.

* |f we solve find the eigenvector satisfying

* AX=1X, we get

- 19 ]
4
9
6

- -

Here c is a constant.

—

We choose v* to be
the unique
eigenvector with the

j>sum of all entries

equal to 1.

12 ] (.38
L4 0.12
3T 9 | T 029

6 - 0.19 |

Same as the page rank vector.



Probabilistic point of view:

Since the importance of a web page is measured by its popularity (how many
incoming links it has), we can view the importance of page i as the probability
that a random surfer on the Internet that opens a browser to any page and
starts following hyperlinks, visits the page i. We can interpret the weights we
assigned to the edges of the graph in a probabilistic way:

A random surfer that is currently viewing web page 2, has % probability to go to
page 3, and % probability to go to page 4.

We can model the process as a random walk on graphs.

Each page has equal probability 7 to be chosen as a starting point. So, the
initial probability distribution is given by the column vector [% % % %]t.

The probability that page i will be visited after one step is equal to Ax, and so
on.

The probability that page i will be visited after k steps is equal to A¥x.

The sequence Ax, A%x, A3, ..., AXx, ... converges in this case to a unique
probabilistic vector v*.

In this context v* is called the stationary distribution and it will be our Page
Rank vector.

Moreover, the ith entry in the vector v* is simply the probability that at each
moment a random surfer visits page i.

The computations are identical to the ones we did in the dynamical systems
interpretation, only the meaning we attribute to each step being slightly
different.



Discussion

The Page Rank vector v* we have computed
by different methods, indicates that page 1
is the most relevant page.

This might seem surprising since page 1 has
2 backlinks, while page 3 has 3 backlinks.

If we take a look at the graph, we see that
node 3 has only one outgoing edge to node
1, so it transfers all its importance to node 1.

Equivalently, once a web surfer that only
follows hyperlinks visits page 3, he can only
go to page 1.

Notice also how the rank of each page is not

trivially just the weighted sum of the edges
that enter the node.

Intuitively, at step 1, one node receives an
importance vote from its direct neighbors,
at step 2 from the neighbors of its
neighbors, and so on.

]




Subtleties and Issues
1. Nodes with no outgoing edges (dangling nodes)

1 00 0
0 0 0
1 1 0

2 / We iteratively compute the rank of

the 3 pages:
1 00 0 : | 00 0 0 0
vy = {3} vy = [n 0 ()} : {g} — [ jj } vy = [() 0 n} : [()} — [u}
: 1 10 . : 1 10 2 0

So in this case the rank of every page is 0. This is counterintuitive, as
page 3 has 2 incoming links, so it must have some importance!

_— -
_— —

N



Subtleties and Issues
2. Disconnected components

A random surfer that starts in the first connected component
has no way of getting to web page 5 since the nodes 1 and 2
have no links to node 5 that he can follow.

1 0
| ()
v= 01, u= } "0 110 0 0]
¥ .
I O10 0 0
() | 7
- = - = 2 1 p— ‘ ' ( ) | ‘ 3 S
are both eigenvectors corresponding to the (0 0O l' () 1)
eigenvalue 1, and they are not just trivially 0 0 I 1 I-'i
one the a scalar multiple of the other. - 2 2 -



* So, both in theory and in practice, the notation of
ranking pages from the first connected
component relative to the ones from the second
connected component is ambiguous.

* The web is very heterogeneous by its nature, and
certainly huge, so we do not expect its graph to
be connected.

* Likewise, there will be pages that are plain
descriptive and contain no outgoing links.

* We need a non ambiguous meaning of the rank

of a page, for any directed Web graph with n
nodes.

How to solve the above problems?



The solution of Page and Brin
(The founders of Google.Inc)

In order to overcome these problems, fix a
positive constant p between 0 and 1, which
we call the damping factor (a typical value for
pis 0.15).

Define the Page Rank matrix (also known as
the Google matrix) of the graph by PageRank

tri
Matrix M = ‘:il — ]-’.:' . A p - B

where 1 1 ... 1

B=—.

I




Characteristics of Googe PageRank

* M remains a column stochastic matrix.
M has only positive entries

* Homework: Prove above factors

* So what?

* These characteristics guarantees that M has a
unigue dominant eigenvalue (= 1) and its
eigenvectors are unique (after normalize it) by
Perron-Frobenius Theorem.



* The matrix M models the random surfer model as follows:
most of the time, a surfer will follow links from a page:
from a page i the surfer will follow the outgoing links and
move on to one of the neighbors of i. A smaller, but
positive percentage of the time, the surfer will dump the
current page and choose arbitrarily a different page from
the web and "teleport" there. The damping factor p reflects
the probability that the surfer quits the current page and
"teleports" to a new one. Since he/she can teleport to any
web page, each page has probability to be chosen. This
justifies the structure of the matrix B.

* |ntuitively, the matrix M "connects" the graph and gets rid
of the dangling nodes. A node with no outgoing edges has
now probability to move to any other node.



Perron-Frobenius Theorem

If M is a positive, column stochastic matrix, then:
1 is an eigenvalue of multiplicity one.

1 is the largest eigenvalue: all the other
eigenvalues have absolute value smaller than 1.

The eigenvectors corresponding to the
eigenvalue 1 have either only positive entries or
only negative entries.

In particular, for the eigenvalue 1 there exists a
unique eigenvector with the sum of its entries
equal to 1.



Power Method Convergence Theorem

* Let M be a positive, column stochastic h x n
matrix.

* Denote by v* its probabilistic eigenvector
corresponding to the eigenvalue 1.

e Let z be the column vector with all entries
equal to 1/n.

* Then the sequence z, Mz, ..., M¥z converges to
the vector v*.



Why does PageRank method work?

* Fact: The PageRank vector for a web graph
with transition matrix A, and damping factor
p, is the unique probabilistic eigenvector of
the matrix M, corresponding to the eigenvalue

1.



Today’s Topics

— Markov Chain



0.9

Markov Chain

0.075

Stagnant
market

0.05

0.8

Transition Matrix:

0.9 0.075 0.025
0.15 0.8 0.05

025 025 0.5 _



Stochastic Matrix = probability matrix
= transition matrix = Markov matrix

A stochastic matrix is a matrix used to describe the
transitions of a Markov chain. Each of its entries is
a nonnegative real number representing a
probability.

* There are several different definitions and types of
stochastic matrices:

— A right stochastic matrix is a real square matrix, with
each row summing to 1.

— A left stochastic matrix is a real square matrix, with each
column summing to 1.

— A doubly stochastic matrix is a square matrix of
nonnegative real numbers with each row and column
summing to 1.



* The state space {1 = bull, 2 = bear, 3 = staghant}

e The distribution over states can be written as a
stochastic row vector x with the relation

x(nt 1) =xmp
« So if at time n the system is in state x("), then three
time periods later, at time n + 3 the distribution is

w(n+3) — .'If(n+2)P _ (w(TH-l) P) P



In particular, if at time n the system is in state 2
(bear), then at time n + 3 the distribution is:

" 0.9 0.075 0.025°
"3 =70 1 0][0.15 0.8 0.05

025 025 0.5 .
"0.7745 0.17875 0.04675

=[0 1 0]]|0.3575 0.56825 0.07425
0.4675 0.37125 0.16125
= [0.3575 0.56825 0.07425].




Using the transition matrix it is possible to calculate, for example,
the long-term fraction of weeks during which the market is
stagnant, or the average number of weeks it will take to go from a
stagnant to a bull market. Using the transition probabilities, the
steady-state probabilities indicate that 62.5% of weeks will be in a
bull market, 31.25% of weeks will be in a bear market and 6.25% of
weeks will be stagnant, since:

"0.625 0.3125 0.06257
Alrim PY = [0.625 0.3125 0.0625
—> 00

10.625 0.3125 0.0625 |




Today’s Topics

— Laplacian Matrix



Laplacian Matrix

* Given a simple graph G with n vertices, its
Laplacian matrix is defined as

L=D-A,
where D is the degree matrix and A is the adjacency
matrix of the graph.

Since G is a simple graph, A only contains 1s or Os
and its diagonal elements are all Os.

* Notice L is symmetric, so there exits a matrix of
same size which is orthogonal so that PLP = D,
where D is diagonal matrix with diagonal
elements are eigenvalues of L.



G
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Today’s Topics

— Usage of Spectral (Eigenvalue-Eigenvector)
information.



Two most important Properties: Assume the
eigenvalues of Lis arranged at A\ < A1 < - < A1

 The number of connected components in the
graph is the algebraic multiplicity of the O
eigenvalue, i.e. the dimension of the
nullspace of the Laplacian.

* The second smallest eigenvalue of L is the
approximates the sparsest cut of a graph.

[There is a name for the second smallet

eigenvalue: algebraic connectivity (or Fiedler
value) of G.]



Other properties of Laplacian Matrix

* Lis positive semi-definite, i.e. all the
eigenvalues are 2 0. (We know L is symmetric
and diagonally dominant.)

* Every row sum and column sum of L is zero.
This implies:

Ao = 0, because the vector vy = (1,1,..., 1) satisfies Lvy = O.

* Laplacian matrix is singular.

e And more.



Today’s Topics

* Directed Graphical Models (Bayesian Networks)



An Example of Bayesian Network

Sprlnkler Rain

l Grass wet |

Rain influences whether the sprinkler
is activated, and both rain and the
sprinkler influence whether the grass is
wet.

A simple Bayesian network

Bayesian network

= Bayes network

= belief network

= Bayes(ian) model

= probabilistic
directed acyclic
graphical model is a
probabilistic graphical
model (a type of
statistical model) that
represents a set of
random variables and
their conditional
dependencies via a

directed acyclic graph
(DAG).



A simple Bayesian Network with
conditional probability tables

SPRINKLER RAIN
RAIN| T F T F

F 0.4 0.6 @ » 0.2 0.8
T 0.01 0.99

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01




The joint probability function is:
Pr(G, S, R) = Pr(G|S, R) Pr(S|R) Pr(R)

where the names of the variables have been abbreviated to G = Grass wet (yes/no), S = Sprinkler
turned on (yes/no), and R = Raining (yes/no).

The model can answer questions like "What is the probability that it is raining, given the grass is wet?"
by using the conditional probability formula and summing over all nuisance variables:

Pi(G=T,R=T) LserpyPHG=T,5R=T)
Pr(G=T) Yspeirry Pr(G =T, 5, R)

Pr(R=T|G=T)=



Pr(G=T,R=T) Y5 PrG=T,8,R=T)
Pr(G=T) ES,Re{T,F} Pr(G=T,5,R)

Pr(R=T|G=T)=

Using the expansion for the joint probability function Pr(G 9, R) and the conditional probabilities from the
conditional probability tables (CPTs) stated in the diagram, one can evaluate each term in the sums in the
numerator and denominator. For example,

Pr(G=T,S=T,R=T)=Pr(G=T|S=T,R=T)Pr(S=T|[R=T)Pr(R=T)

=0.99 x 0.01 x 0.2
=0.00198.
Then the numerical results (subscripted by the associated variable values) are
0.00198 0.1584 891
Pr(R=TIG=T) = rrr 0. O%RTE ~ 35.77%.

~0.00198777 + 028877 + 0.1584757 + 0.075F 2491



Today’s Topics

 Plate Notation (only if time permits)
— Naive Bayes as a Graphical Model
— LDA



Plate Notation of )

Naive Bayes
X) -

Likelihood Class Prior Probability

X

Plxlo)P(o)

P(c| x)
| P(x)
\L
Posterior Probability Predictor Prior Probability

P(c|X)oo P(x,|¢c)x P(x, | c)>i - x P(x, | ¢c)x P(c)

To maximize this product, we take log of it



Plate Notation representing the LDA model
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Plate Notation

Example: Modeling topically related:
Documents in a corpus, and words in each documents.

Plate notation for Latent Dirichlet allocation =

\

A Bayesian network that models how documents in a corpus are topically related.




Plate Notation

Note: a and B not in any plate. B is the parameter of the uniform Dirichlet
prionon the per-topic word distribution.

o is the parameter of the uniform Dirichlet
prior on the per-document topic distributions

The outermost plate represents all the
variables related to a specific document, The M indicates that the

including 0; the topic distribution for variables inside are repeated M
document i. times, once for each document.



Plate Notation

The inner plate represents the The circle representing the
variables associated with each of N, individual words is shaded,

. L. , indicating that each w;; is
words in document i: z; is the toplc

. . . observable.
for the jth word in document i, and The other circles are empty,

w;; is the actual word used. B  Indicating that.the other variables

Plate notation for Latent Dirichlet allocation

The directed edges between variables indicate The N represents the repetition of the
dependencies between the variables: for variables in the inner plate N, times, once

example, each w;; depends z; and p. for each word in document i.



Suppose you have the following set of sentences:

| like to eat broccoli and bananas.

| ate a banana and spinach smoothie for breakfast.
Chinchillas and kittens are cute.

My sister adopted a kitten yesterday.

Look at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It’s a way of automatically discovering
topics that these sentences contain. For example, given these sentences and
asked for 2 topics, LDA might produce something like

Sentences 1 and 2: 100% Topic A
Sentences 3 and 4: 100% Topic B
Sentence 5: 60% Topic A, 40% Topic B

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at
which point, you could interpret topic A to be about food)

Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at
which point, you could interpret topic B to be about cute animals)

How does LDA perform this discovery?



LDA Model

LDA represents documents as mixtures of topics that spit out words with
certain probabilities.

It assumes that documents are produced in the following fashion: when
writing each document, you

* Decide on the number of words N the document will have (say,
according to a Poisson distribution).

* Choose a topic mixture for the document (according to a Dirichlet
distribution over a fixed set of K topics). For example, assuming that we
have the two food and cute animal topics above, you might choose the
document to consist of 1/3 food and 2/3 cute animals.

 Generate each word w_i in the document by:

— First picking a topic (according to the multinomial distribution that you
sampled above; for example, you might pick the food topic with 1/3
probability and the cute animals topic with 2/3 probability).

— Using the topic to generate the word itself (according to the topic’s
multinomial distribution). For example, if we selected the food topic, we
might generate the word “broccoli” with 30% probability, “bananas” with
15% probability, and so on.

Assuming this generative model for a collection of documents, LDA then
tries to backtrack from the documents to find a set of topics that are
likely to have generated the collection.



Example

Let’s make an example. According to the above process, when generating
some particular document D, you might

Pick 5 to be the number of words in D.
Decide that D will be 1/2 about food and 1/2 about cute animals.

Pick the first word to come from the food topic, which then gives you
the word “broccoli”.

Pick the second word to come from the cute animals topic, which gives
you “panda”.

Pick the third word to come from the cute animals topic, giving you
“adorable”.

Pick the fourth word to come from the food topic, giving you
“cherries”.

Pick the fifth word to come from the food topic, giving you “eating”.

So the document generated under the LDA model will be “broccoli panda
adorable cherries eating” (note that LDA is a bag-of-words model).



Learning

So now suppose you have a set of documents. You’ve chosen some fixed number of K topics to
discover, and want to use LDA to learn the topic representation of each document and the
words associated to each topic. How do you do this? One way (known as collapsed Gibbs
sampling) is the following:

* Go through each document, and randomly assign each word in the document to one of the
K topics.

* Notice that this random assignment already gives you both topic representations of all the
documents and word distributions of all the topics (albeit not very good ones).

* Sotoimprove on them, for each document d...



Learning

So now suppose you have a set of documents. You’ve chosen some fixed number of K topics to
discover, and want to use LDA to learn the topic representation of each document and the
words associated to each topic. How do you do this? One way (known as collapsed Gibbs
sampling) is the following:

- Go through each document, and randomly assign each word in the document to one of the
K topics.

- Notice that this random assignment already gives you both topic representations of all the
documents and word distributions of all the topics (albeit not very good ones).

- So to improve on them, for each document d...

e Go through each word win d...

And for each topic t, compute two things:

1) p(topic t | document d) = the proportion of words in document d that are currently
assigned to topic t, and

2) p(word w | topic t) = the proportion of assignments to topic t over all documents
that come from this word w.

Reassign w a new topic, where we choose topic t with probability p(topict | document
d) * p(word w | topic t) (according to our generative model, this is essentially the
probability that topic t generated word w, so it makes sense that we resample the
current word’s topic with this probability)

In other words, in this step, we’re assuming that all topic assignments except for the
current word in question are correct, and then updating the assignment of the current
word using our model of how documents are generated.

* After repeating the previous step a large number of times, you’ll eventually
reach a roughly steady state where your assignments are pretty good. So use
these assignments to estimate the topic mixtures of each document (by
counting the proportion of words assigned to each topic within that document)
and the words associated to each topic (by counting the proportion of words
assigned to each topic overall).



