
Mathematics	of	Big	Data,	I	
Lecture	2:	Effective	Optimization	and		
Computation,	Logistic	Regression,	and	

Generalized	Linear	Models

Weiqing	Gu
Professor	of	Mathematics

Director	of	the	Mathematics	Clinic

Harvey	MuddCollege
Summer	2018

https://math189su18.github.io/

@2018	by	Weiqing	 Gu.		All	rights	reserved																													https://math189r.github.io/



Recall	last	time	we	covered	following
• Frist: Big	data	introduction	(answer	first	two	
questions)

• Second:	Use	linear	regression	as	an	example	to	
give	an	overview	of	big	data	analytics

Modeling	Approaches:
• Statistical	calculus
• Geometric	analytic
• Probabilistic
Each	has	its	own	merit



Let’s	Recap
We	had	shown	the	following	all	three	approaches	
give	the	same	solution.	
• Statistical	calculus
• Geometric	analytic
• Probabilistic

Q2: For big data, is it really effective to compute          
?  NO!  

Q1: What if A is not invertible? Want to achieve 
some perturbing of A. This is equivalent (your hw) 
to minimize:                 (This	is	Called	ridge	regression.)	

Let	A	=	



Today’	Topics

• Review	or	intro	Probability	Theory
• Logistic	Regression	
• Generalized	Linear	Models
• Effective	Optimization	and		Computation	
(only	if	time	permits)



When	we	deal	with	big	data,	we	must	study	
Effective	optimization	Techniques	and	

Fast	Computation	
• For	this	course,	we	will	focus	on	
– Gradient	Descent

• Batch	gradient	descent
• Stochastic	gradient	descent

– Newton's	method
– Various	matrix	decompositions,	for	examples

• LU	decomposition
• Cholesky decomposition
For	example:	We can use LU or Cholesky

decomposition to solve the normal eqn:



Recall:	For	linear	regression,		we	want	
want	to	choose	θ to	minimize	J(θ).

Note:	h	is	linear	on				!	
Key:	J	is	quadratic	on				.;	Exists	Unique	Minimum!	



Why	does											have	a	unique	minimum?
(Exercise:	Use	two	different	ways	to	prove	it—Hints	below.)

• Since		XTX	is	positive	definite	
when	XTX	is	invertible.	

• (Hint	for	proof:	vT(XTX)v	=	
(Xv)T(Xv)	=	||Xv||2≥	0	and	the	
equality	hold,	figure	out	why	v	
has	to	be	0	using	the	rank	of	X.)

• In	one	variable,	f(x)	=	ax2 +bx +c,	
if	a	>0,	how	does	the	graph	of	f	
look	like?

• Another	way:	use	geometric	
approach	to	get	the	normal	
equation	and	write	down	the	
unique	solution.	



(Least	Mean	Square)	LMS	Algorithm
Q:	Given	a	training	set,	how	do	we	pick/learn,	the	parameters	θ?		
A:	Find	 the	gradient	of	J(θ).	

This	rule	is	called	the	LMS	update	rule	(or	Widrow-Hoff	 learning	 rule).

Note:	Here	it	real	should	be	the	
transpose	of	it	times	itself.		But	
when	you	take	derivative,	you	
think	 it	is	a	square.	



Use	the	gradient	descent	algorithm
• Which	starts	with	some	initial	θ,	and	repeatedly	
performs	the	update.

• Here	α	is	called	the	learning	rate.
• Geometrically,	it	repeatedly	takes	a	step	in	the	
direction	of	steepest	decrease	of	J.

J

From	level-curve	visualization.

Make	α	smaller	if	necessary.	



Batch	Gradient	Descent	(BGD)

Remarks:	
1) This	method	looks	at	every	example	in	the	entire	

training	set	on	every	step,	and	is	called	BGD.
2) It	is	well	know	that	gradient	descent	can	be	

susceptible	to	local	minima	in	general	(see	the	figure	
on	right),	the	optimization	problem	we	have posed	
here	for	linear	regression	has	only	one	global,	and	no	
other	local,optima;	thus	gradient	descent	always	
converges	(assuming	the	learning	rate	α	is	not	too	
large)	to	the	global	minimum.

3) The	key	is	that		our	J	is	a	convex	quadratic	function.	

This	is	simply	gradient	descent	
on	the	original	 cost	function	 J.



Stochastic	Gradient	Descent	(SGD)

Remarks:	
1) SGD	repeatedly	run	through	the	training	set,	and	each	time	it	

encounters	a	training	example,	it	updates	the	parameters	
according	to	the	gradient	of	the	error	with	respect	to	that	single	
training	example	only.	

2) SGD	may	never	“converge”	to	the	unique	minimum,	and	the	
parameters	θ will	keep	oscillating	around	the	minimum	of	J(θ);	but	
in	practice	most	of	the	values	near	the	minimum	will	be	reasonably	
good	approximations to	the	true	minimum.



ComparingBatch	gradient	descent	with Stochastic	gradient	descent

• For	big	data,	often	the	training	set	is	large,	people	prefer	use	stochastic	gradient	
descent instead	of	batch	gradient	descent.

• Since	BGD	has	to	scan	thru	the	entire	training	set	before	taking	a	single	step—a	
costly	operation	if	m	is	large—SGD	can	start	making	progress	right	away,	&	
continues	to	make	progress	with	each	example	it	looks	at.	

• SGD	can	run	on	dynamical	data	sets.		As	data	coming,	it	updates	the	parameters.
• Often,	SGD	gets	θ “close”	to	the	minimum	much	faster	than	BGD.
• But	SGD	gets	only	approximation	solution	of	θ.		This	is	a	trade	off	 when	dealing	

with	big	data.



Now	we	switch	gear:

Logistic	Regression	and	Newton’s	Method
• Key:	Logistic	Regression	is	for	Classification	Problems.		
• For	example:	distinguish	between	benign	tumors	and	
malignant	tumors.	

Key	idea:	try	to	utilize	the	linear	regression	techniques	by	
transform	a	discrete	problem	to	a	smooth	problem	passing	
thru	a	sigma	so	that	we	can	take	gradient	 for	optimization.	



Logistic	Regression	maps	the	fitting	straight	
line/hyperplane in	linear	regression	to	a	monotone	

increasing	curve,	often	a	sigmoid	function.

Your	homework:	 	Problem	7

Work	out	the	details	
of	
Logistic	regression	
with	
the	students	on	the	
board.



It	is	easier	to	maximize	the	log	
likelihood:

This	gives	us	the	stochastic	gradient	ascent	rule:

Note	:	There	is	another	method	running	even	fast	than	this	one,	called	Newton’s	method.



Newton’s	method	for	fast	computation
In	the	case	of	line,	we	just	use	the	definition	of	the	slope	of	f.



Newton’s	method	for	fast	computation

• Case	1 Let	f	:	RàR (here,	we	just	use	the	definition	of	the	slope	of	f.)

• Newton’s	method	for	finding	an	isolated	real	root
• Key:	In	general	using	Taylor	expansion	at	x	=	x0
• Take	the	linear	best	approximation	&	plug	in	x	=x1.

Now	Taylor	expanding	of	f	at	x	=	x1	and	similarly	finding	 x2.		

Note:	if	x1	is	a	root,	 then	f(x1)	=	0,
expend	at	x0 and	plug	x	=	x1.



Iteratively: Taylor	expanding	of	f	at	x	=	xn,
plugging	in	x	=	xn+1, and		solving	xn+1.

Newton’s	method	 is	for	finding	 a	root	of	a	function.		
Keys:	Taylor	expansion,	 	plug	into	linear	part,	solve,	then	iterate.

Case	2	Multivariable:	



Now	we	switch	gear	again:

Generalized	Linear	Models	(GLMs)
• This	topic	includes:	exponential	family	&	Softmax Regression.

• What	is	an	exponential	 family?	 A	class	of	
distributions	is	in	the	exponential	family	if

• η =	the	natural	parameter	(or	the	canonical	
parameter)	of	the	distribution

• T(y)	= the	sufficient	statistic	(	often	T(y)	=	y)
• a(η)	is	the	log	partition	function.	
The	quantity	e	−a(η)	essentially	plays	the	role	of	a	normalization	constant,	
that	makes	sure	the	distribution	p(y;	η)	sums/integrates	over	y	to	1.
Let	T,	a	and	b	fixed	and		let	the	parameter	η vary,	then	it	defines	a	family	of	distribution.	
i.e.	We	get	different	distributions	 within	this	family.



Let’s	first	show	

Bernoulli	distributions	are	exponential	family	distribution.

• Work	out	details	with	the	students	on	the	board.



Let’s	first	show	

Gaussian	distributions	are	exponential	family	distribution.

Compare:	

We	get:	



Constructing	GLMs		
Note:	you	need	to	know	which	distribution	models	what	kind	of	problems

• Suppose	you	want	to	build	a	model	to	estimate	the	
number	(y)	of	customers	arriving	in	your	store	in	any	given	
hour,	based	on	certain	features	x such	as	store	promotions,	
recent	advertising,	weather,	day-of-week,	etc.	

• We	know	that	the	Poisson	distribution	usually	gives	a	good	
model	for	numbers	of	visitors.	

• Knowing	this,	how	can	we	come	up	with	a	model	for	this	
problem?	

• Fortunately,	the	Poisson	is	an	exponential	family	
distribution,	so	we	can	apply	a	Generalized	Linear	Model	
(GLM).	 (Homework	or	exam	problem?)

• Lots	of	known	distributions	are	exponential	families.
• Here,	we	will	describe	a	method	for	constructing	GLM	
models	for	problems	such	as	these.

(Reading	assignment)



Assumptions	for	Generalized	Linear	Models	
• In	generally,	consider	a	classification	or	regression	problem	

where	we	would	like	to	predict	the	value	of	some	random	
variable	y	as	a	function	of	x.	

• To	derive	a	GLM	for	this	problem,	we	will	make	the	following	
three	assumptions	about	the	conditional	distribution	of	y	given	x	
and	about	our	model:	

• 1.	y	|	x;	θ ∼ Exponential	Family(η).	I.e.,	given	x	and	θ,	the	
distribution	of	y	follows	some	exponential	family	distribution,	
with	parameter	η.	

• 2.	Given	x,	our	goal	is	to	predict	the	expected	value	of	T(y)	given	
x.	Since	often	T(y)	=	y,	so	this	means	we	would	like	the	prediction	
h(x)	output	by	our	learned	hypothesis	h	to	satisfy	h(x)	=	E[y|x].	
(Note	that	this	assumption	is	satisfied	in	the	choices	for	hθ(x)	for	
both	logistic	regression	and	linear	regression.	For	instance,	in	
logistic	regression,	we	had	

hθ(x)	=	p(y	=	1|x;	θ)	=	0	·	p(y	=	0|x;	θ)	+	1	·	p(y	=	1|x;	θ)	=	E[y|x;	θ].)	
• 3.	The	natural	parameter	η and	the	inputs	x	are	related	linearly:	

η =	θ T	x.	(Or,	if	η is	vector-valued,	then	ηi =	θ i
T x.)



Examples:	Least	square	and	Logistic	
regression	are	GLM	family	of	models

Given	that	y	is	binary-valued,	it	therefore	
seems	natural	to	choose	the	Bernoulli	
family	of	distributions	 to	model	 the	
conditional	distribution	 of	y	given	x.	In	our	
formulation	 of	the	Bernoulli	distribution	 as	
an	exponential	 family	distribution,	 we	had	
φ =	1/(1	+	e	−η ).	Furthermore,	 note	that	if	
y|x;	θ ∼ Bernoulli(φ),	 then	E[y|x;	θ]	=	φ.



Softmax Regression

• Let’s	look	at	another	example	of	a	GLM.	Consider	a	
classification	problem	in	which	the	response	variable	y	
∈ {1,	2,	.	.	.	,	k}.	

• For	example,	rather	than	classifying	email	into	the	two	
classes	spam	or	not-spam—which	would	have	been	a	
binary	classification	problem— this	time	we	want	to	
classify	it	into	four	classes,	such	as	spam,	family-mail,	
friends-mail,	and	work-related	mail.	The	response	
variable	is	still	discrete,	but	can	now	take	on	more	than	
two	values.	We	will	thus	model	it	as	distributed	
according	to	a	multinomial	distribution.



Let’s	Derive
A	GLM	using

Multinomial	distributions	as	exponential	family	distribution.

• What	are	Multinomial	distributions?
• For	example:	If	a	6	sided	die	has	

– 3	faces	painted	red
– 2		faces	painted	white
– 1	faces	painted	blue
And	rolled	100	times.		
Find	P(60	red,	30	white,	and	10	blue).

Work	out	details	with	the	students	on	the	board.

Generally	an	experiment	with	m	outcomes	with	respective	probabilities	p1,	p2,…,	pm
is	performed	n	times	independently.
Let	xi =	#	of	times	outcome	 i appears,		i=1,2,…,m
Then	P(x1=k1,	x2=k2,	…,	xm =	km)	=	?

• Work	out	details	with	the	students	on	the	board.



Details	of	Softmax Regression

• Work	out	details	with	the	students	on	the	
board.



Back	Up	Slides

• Review	Probability	Theory	for	those	have	taken	
the	probability	course.

• Introduction	to	Probability	Theory	for	those	
have	not	taken	the	probability	course.



A	probability	function	is	a	special	
function	which	must	satisfy:



A	Big	Picture	of	Probability	Theory	

Key:	View	everything	as	functions.	P	eats	an	
observation	x	of	a	random	variable	X	and	spits	out	
a	value	P(X=x)	 in	[0,1],	&	the	sum	of	all	p(x)	is	1.	
• X	is	a	random	variable.	 	P(X=x)	=	p(x).
Like	the	variables	in	calculus,	we	can	add,	subtract,	
make	linear	 combinations;	 or	make	new	functions	 	
f(x),	also	can		take	derivatives/integrations.

where	Σ =	cov [x]

Xà f(X).		For	e.g.s
f(X)	=	∑aiXi
f(X)	=	AX +b
f(X)	=	Xn
f(X)	=	Taylor	exp.

what	is E(f(X))?

Other	known	distrib’ns
Bernoulli
Beta		
Chi-square
Poisson
Student’s	 t
Uniform

Key	Characteristics:

Discrete	distrib’n
Conti.	distrib’n

Probability	Rules	for	Events:
Product	rule/iid
Joint	probability

Conditional	Independence

• Central	Limit	Theorem
Other	Key	Tech:	Making	connection	to	
derivative/Jacobian/integrations.

Besides	pmf/pdf, +	3	key	fcns:	
• cdf (cumulative	distri.	fcn)	
• cf (characteristic	fcn E(eitX))
• mgf (moment	generating	fcn)

mX(t)	=	E	(etX)

Condi.	 Prob &	Bayesian	Rules

Muliti-rv
Cov (X,	Y)
Corrl(X,	 Y)
Cov.	Matrix
Corrl Matrix

Single	rv
E(X) &	Condit’l Expec’n
Variance/Stan.	Devi.
Moments
Skewness etc.

Probability	Distributions
(Discrete		&	Continuous)
and	their		Geometric	
Meanings

Gaussian	
Distrib.	

Taking	
limit



Bernoulli	Distribution



Binomial	Distribution
• Probability	Mass	Function



Two	different	ways	to	generalize	
Binomial	distribution

• From	Binomial	distribution	to	Poisson	
distribution

• From	Binomial	distribution	to	Multinomial	
Distribution



Poisson’s	distribution

• Relations	between	Binomial	Distribution	and	
Poisson’s	distribution.		

• Details	on	board.
• This	gives	and	example	of	from	discrete	
probability	to	continuous	probability.



Multivariate	Distribution

• Details	on	board.

• Example:	Multinomial	Distribution



Claim:	Multinomial	distributions	as	exponential	family	distribution.

• Recall:	What	are	Multinomial	distributions?
• For	example:	If	a	6	sided	die	has	

– 3	faces	painted	red
– 2		faces	painted	white
– 1	faces	painted	blue
And	rolled	100	times.		
Find	P(60	red,	30	white,	and	10	blue).

Work	out	details	with	the	students	on	the	board.

Generally	an	experiment	with	m	outcomes	with	respective	
probabilities	p1,	p2,…,	pm is	performed	n	times	independently.
Let	xi =	#	of	times	outcome	i appears,		i=1,2,…,m
Then	P(x1=k1,	x2=k2,	…,	xm =	km)	=	?



• Work	out	details	with	the	students	on	the	board.

Claim:	Multinomial	distributions	are	exponential	family	
distributions.



correlation	coefficient	&	correlation	matrix	
• The	(Pearson)	correlation	coefficient	between	two	
rvs X	and	Y	is	defined	as	

• If	X	and	Y	are	
indep.,	then	cov [X,	Y	]	=	0;	say	X	and	Y	are	uncorrelated.	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1

• A	correlation	matrix	of	a	random	vector	has	the	form:

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 and
Show that corr[X,Y] = 1 iff Y = aX +b for some parameters a and b. 



Example	of	Correlation	Coefficients



Conditional	Probability

The	conditional	probability	of	event	A,	
given	that	event	B	is	true:	

Bayes	rule:	



Recall:	Probability	of	an	Event
• p(A)	denotes	the	probability	that	the	event	A	is	true.
• For	example:
• A	=	a	logical	expression	“it	will	rain	tomorrow”	
We	require	that	0	≤	p(A)	≤	1.	
p(A)	=	0	means	the	event	definitely	will	not	happen
p(A)	=	1	means	the	event	definitely	will	happen	

denotes	the	probability	of	the	event	not	A	

We	also	write:
A=1	to	mean	the	event	A	is	true.
A=0	to	mean	the	event	A	is	false.	



Recall:	Fundamental	Rules



Changing	gear:

Recall:	Gaussian	with	one	variable	
(called	Univariate Gaussian)	

Gaussian	distribution	with	mean	μ,	and	standard	deviation	σ.

When μ	=	0		and σ =	1,	it	is	call	the	standard	normal	distribution.



Different	ways	to	find	expected	values
Where	f(x)	is	the	probability	
density	function	of		X.

Example:	Let	f(x)	be	the	density	of	the	standard	normal	
distribution.

Method	1:	Since	is																		an	odd	function	and	the	limits	
of	the	integral	are	symmetric,	so	we	get	E[X]	=0.	

Method	2:	Directly	integrate.

Method	3:	Using	the	moment	generating	function.



Method	2



Method	3
• The	moment	generating	function	is	defined	as

When	k	=1,	
E[x2]	=1.
Variance	= 1.

1

E[x]	=	0

Compare:



Properties	of	Gaussians	

• Integration	of	the	densities	equals	to	1.

• Mean:

• Variance:



In	general,	do	translation	and	scale;	
i.e.	change	of	variables	when	try	to	
find	those	key	characteristic	values



Covariance,	and	Covariance	Matrix

• The	covariance between	two	rv’s X	and	Y	measures	
the	degree	to	which	X	and	Y	are	(linearly)	related;	
defined	as

Exercise

If	x is	a	d-dimensional	random	vector,	its	covariance	matrix	is	

defined	to	be	the	following	symmetric,	positive	definite	matrix:

Ofen denoted 
by ∑ 



correlation	coefficient	&	correlation	matrix	
• The	(Pearson)	correlation	coefficient	between	two	
rvs X	and	Y	is	defined	as	

• If	X	and	Y	are	
indep.,	then	cov [X,	Y	]	=	0;	say	X	and	Y	are	uncorrelated.	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1

• A	correlation	matrix	of	a	random	vector	has	the	form:

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 and
Show that corr[X,Y] = 1 iff Y = aX +b for some parameters a and b. 



Example	of	Correlation	Coefficients



The	multivariate	Gaussian	(distribution)
or	multivariate	normal	(MVN)	

(The	most	widely	used	joint	probability	density	function	for	continuous	variables)	

Note:	the	precision	matrix	or	concentration	matrix	is	just		

A	spherical	 or	isotropic	 covariance	
has	one	free	parameter.

determinant













Now	let’s	visualize	as	µ	changes







Level	sets	visualization



The	cumulative	distribution	function	(cdf)	
• For	Gaussian	distribution:
• This	integral	has	no	closed

form		expression,	but	is	built	in	to	most	software	packages.	



About	your	homework…
Beta	Distribution

Study	it	in	detail	- Homework





Review:	Probability	of	an	Event
• p(A)	denotes	the	probability	that	the	event	A	is	true.
• For	example:
• A	=	a	logical	expression	“it	will	rain	tomorrow”	
We	require	that	0	≤	p(A)	≤	1.	
p(A)	=	0	means	the	event	definitely	will	not	happen
p(A)	=	1	means	the	event	definitely	will	happen	

denotes	the	probability	of	the	event	not	A	

We	also	write:
A=1	to	mean	the	event	A	is	true.
A=0	to	mean	the	event	A	is	false.	



Review:	Fundamental	Rules



• Independence	(or	unconditionally	
independent	or	marginally	independent)	
denoted		X	⊥ Y:

• Conditional	
Independence

Theorem:				X	⊥ Y	|Z	iff there	exist	function	g	and	h	such	that



The	conditional	probability	of	event	A,	
given	that	event	B	is	true:	

Bayes	rule:	


