Mathematics of Big Data, I
Lecture 3: Review Probability, GLMs (conti), Schur Complement, Multivariate Gaussian Distribution

Weiqing Gu
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College
Summer 2017
@2017 by Weiqing Gu. All rights reserved

Today

- Review Probability
- View Probability functions as special kind of functions
- Binomial
- Multinomial
- Poisson
- Beta distribution
- Key characteristics
- Conditional probability
- Generalized Linear Model (GLMs) (continued)
- Schur's Complement
- Conditional Normal Distributions
- Review: Single variable normal distribution (i.e. Gaussian distribution) and Multivariate Gaussian Distribution

A probability function is a special function which must satisfy:

A Big Picture of Probability Theory

$0 \leq P(X) \leq 1$ $\sum P(X)=1$

Key Characteristics:

Single rv
$\mathrm{E}(\mathrm{X})$ \& Condit'I Expec'n Variance/Stan. Devi.
Moments
Skewness etc.

Muliti-rv $\operatorname{Cov}(X, Y)$ $\operatorname{Corrl}(\mathrm{X}, \mathrm{Y})$ Cov. Matrix Corrl Matrix

Probability Rules for Events:
Product rule/iid Joint probability Conditional Independence

Besides pmf/pdf, + 3 key fcns: - cdf (cumulative distri. fcn)

- cf (characteristic fcn E($\left.\left.e^{i t x}\right)\right)$
- mgf (moment generating fcn) $m_{x}(t)=E\left(e^{t x}\right)$

Other known distrib'ns Bernoulli
Beta $\theta \sim \operatorname{Beta}(a, b)$
Chi-square
Poisson
Student's t
Uniform
Discrete distrib'n Taking Conti. distrib'n limit

Condi. Prob \& Bayesian Rules

$$
\begin{gathered}
p(A \mid B)=\frac{p(A, B)}{p(B)} \text { if } p(B)>0 \\
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)} \\
=\frac{p(X=x) p(Y=y \mid X=x)}{\sum_{x^{\prime}} p\left(X=x^{\prime}\right) p\left(Y=y \mid X=x^{\prime}\right)}
\end{gathered}
$$

$$
\mathbf{y}=f(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{b}
$$

Two different ways to generalize Binomial distribution

- From Binomial distribution to Poisson distribution
- From Binomial distribution to Multinomial Distribution
- Recall: What are Multinomial distributions?
- For example: If a 6 sided die has
- 3 faces painted red
- 2 faces painted white
- 1 faces painted blue

And rolled 100 times.
Find $\mathrm{P}(60$ red, 30 white, and 10 blue).
Work out details with the students on the board.

Generally an experiment with m outcomes with respective probabilities $p_{1}, p_{2}, \ldots, p_{m}$ is performed n times independently.
Let $x_{i}=$ \# of times outcome i appears, $i=1,2, \ldots, m$
Then $P\left(x_{1}=k_{1}, x_{2}=k_{2}, \ldots, x_{m}=k_{m}\right)=$?

Claim: Multinomial distributions as exponential family distributi

Claim: Multinomial distributions as exponential family distribution.

- Work out details with the students on the board.

correlation coefficient \& correlation matrix

- The (Pearson) correlation coefficient between two rvs X and Y is defined as

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

- If X and Y are indef., then $\operatorname{cov}[X, Y]=0 ; \operatorname{say} X$ and Y are uncorrelated.
A correlation matrix of a random vector has the form:
$\mathbf{R}=\left(\begin{array}{cccc}\operatorname{corr}\left[X_{1}, X_{1}\right] & \operatorname{corr}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{1}, X_{d}\right] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr}\left[X_{d}, X_{1}\right] & \operatorname{corr}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{d}, X_{d}\right]\end{array}\right)$

Exercise: show that $-1 \leq \operatorname{corr}[x, Y] \leq 1$ and Show that corr $[x, y]=1$ iff $y=a x+b$ for some parameters a and b.

Example of Correlation Coefficients

Figure 2.12 Several sets of (x, y) points, with the correlation coefficient of x and y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

Conditional Probability

The conditional probability of event A , given that event B is true:

$$
p(A \mid B)=\frac{p(A, B)}{p(B)} \text { if } p(B)>0
$$

Bayes rule:

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}=\frac{p(X=x) p(Y=y \mid X=x)}{\sum_{x^{\prime}} p\left(X=x^{\prime}\right) p\left(Y=y \mid X=x^{\prime}\right)}
$$

Recall: Probability of an Event

- $p(A)$ denotes the probability that the event A is true.
- For example:
- $A=$ a logical expression "it will rain tomorrow" We require that $0 \leq p(A) \leq 1$.
$p(A)=0$ means the event definitely will not happen
$p(A)=1$ means the event definitely will happen
$p(\bar{A})$ denotes the probability of the event not A

$$
p(\bar{A})=1-p(A)
$$

We also write:
$A=1$ to mean the event A is true.
$A=0$ to mean the event A is false.

Recall: Fundamental Rules

$$
\begin{aligned}
p(A \vee B) & =p(A)+p(B)-p(A \wedge B) \\
& =p(A)+p(B) \text { if } A \text { and } B \text { are mutually exclusive } \\
p(A, B) & =p(A \wedge B)=p(A \mid B) p(B)
\end{aligned}
$$

$$
p(A)=\sum_{b} p(A, B)=\sum_{b} p(A \mid B=b) p(B=b)
$$

$$
p\left(X_{1: D}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{2}, X_{1}\right) p\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) \ldots p\left(X_{D} \mid X_{1: D-1}\right)
$$

Changing gear:

Recall: Gaussian with one variable (called Univariate Gaussian)

Gaussian distribution with mean μ, and standard deviation σ.

$$
p\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

When $\mu=0$ and $\sigma=1$, it is call the standard normal distribution.

Different ways to find expected values

$$
E[X]=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

Where $f(x)$ is the probability density function of X.

Example: Let $f(x)$ be the density of the standard normal distribution.

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}
$$

$$
E[X]=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}} \mathrm{~d} x
$$

Method 1: Since is $x e^{-x^{2} / 2}$ an odd function and the limits of the integral are symmetric, so we get $\mathrm{E}[\mathrm{X}]=0$.

Method 2: Directly integrate.
Method 3: Using the moment generating function.

Method 2

$$
\begin{gathered}
E[X]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{\frac{-x^{2}}{2}} \mathrm{~d} x \\
=-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d\left(-\frac{x^{2}}{2}\right) \\
=-\left.\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right|_{-\infty} ^{\infty} \\
=0
\end{gathered}
$$

Method 3

- The moment generating function is defined as

$$
\begin{aligned}
& \phi(t)=E\left[e^{t X}\right] . \\
& \phi(t)=C \int_{\mathbb{R}} e^{t x} e^{-x^{2} / 2} d x=C \int_{\mathbb{R}} e^{-x^{2} / 2+t x} d x=e^{t^{2} / 2} C \int_{\mathbb{R}} e^{-(x-t)^{2} / 2} d x . \\
& t^{2} / 2-(x-t)^{2} / 2=t^{2} / 2+\left(-x^{2} / 2+t x-t^{2} / 2\right)=-x^{2} / 2+t x \\
& \phi(t)=e^{t^{2} / 2}=1+\left(t^{2} / 2\right)+\frac{1}{2}\left(t^{2} / 2\right)^{2}+\cdots+\frac{1}{k!}\left(t^{2} / 2\right)^{k}+\cdots .
\end{aligned}
$$

$$
E\left[e^{t X}\right]=E\left[1+t X+\frac{1}{2}(t X)^{2}+\cdots+\frac{1}{n!}(t X)^{n}+\cdots\right]
$$

$$
=1+E[X] t+\frac{1}{2} E\left[X^{2}\right] t^{2}+\cdots+\frac{1}{n!} E\left[X^{n}\right] t^{n}+\cdots
$$

$$
\mathrm{E}[\mathrm{x}]=0
$$

When $\mathrm{k}=1$, $\mathrm{E}\left[\mathrm{x}^{2}\right]=1$. Variance $=1$.

Compare:

$$
\frac{1}{(2 k)!} E\left[X^{2 k}\right] t^{2 k}=\frac{1}{k!}\left(t^{2} / 2\right)^{k}=\frac{1}{2^{k} k!} t^{2 k}, \quad \square \quad E\left[X^{2 k}\right]=\frac{(2 k)!}{2^{k} k!}, k=0,1,2, \ldots
$$

$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
p\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Integration of the densities equals to 1.
$\int_{-\infty}^{\infty} p\left(x ; \mu, \sigma^{2}\right) d x=\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=1$
- Mean: $\mathrm{E}_{X}[X]=\int_{-\infty}^{\infty} x p\left(x ; \mu, \sigma^{2}\right) d x$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\mu
\end{aligned}
$$

- Variance:

$$
\begin{aligned}
\mathrm{E}_{X}\left[(X-\mu)^{2}\right] & =\int_{-\infty}^{\infty}(x-\mu)^{2} p\left(x ; \mu, \sigma^{2}\right) d x \\
& =\int_{-\infty}^{\infty}(x-\mu)^{2} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\sigma^{2}
\end{aligned}
$$

In general, do translation and scale; i.e. change of variables when try to find those key characteristic values

Covariance, and Covariance Matrix

- The covariance between two rv's X and Y measures the degree to which X and Y are (linearly) related; defined as

$$
\operatorname{cov}[X, Y] \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Exercise

$$
=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

If \mathbf{x} is a d -dimensional random vector, its covariance matrix is defined to be the following symmetric, positive definite matrix:

$$
\begin{aligned}
& \operatorname{cov}[\mathbf{x}] \triangleq \mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{T}\right] \\
& \text { Ofen denoted } \\
& \text { by } \Sigma \\
& =\left(\begin{array}{cccc}
\operatorname{var}\left[X_{1}\right] & \operatorname{cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{cov}\left[X_{1}, X_{d}\right] \\
\operatorname{cov}\left[X_{2}, X_{1}\right] & \operatorname{var}\left[X_{2}\right] & \cdots & \operatorname{cov}\left[X_{2}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left[X_{d}, X_{1}\right] & \operatorname{cov}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{var}\left[X_{d}\right]
\end{array}\right)
\end{aligned}
$$

correlation coefficient \& correlation matrix

- The (Pearson) correlation coefficient between two rvs X and Y is defined as

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

- If X and Y are indef., then $\operatorname{cov}[X, Y]=0 ; \operatorname{say} X$ and Y are uncorrelated.
A correlation matrix of a random vector has the form:
$\mathbf{R}=\left(\begin{array}{cccc}\operatorname{corr}\left[X_{1}, X_{1}\right] & \operatorname{corr}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{1}, X_{d}\right] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr}\left[X_{d}, X_{1}\right] & \operatorname{corr}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{d}, X_{d}\right]\end{array}\right)$

Exercise: show that $-1 \leq \operatorname{corr}[x, Y] \leq 1$ and Show that corr $[x, y]=1$ iff $y=a x+b$ for some parameters a and b.

Example of Correlation Coefficients

Figure 2.12 Several sets of (x, y) points, with the correlation coefficient of x and y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

The multivariate Gaussian (distribution) or multivariate normal (MVN)

(The most widely used joint probability density function for continuous variables)

$$
\begin{aligned}
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) & \triangleq \frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] \\
\text { where } \boldsymbol{\mu} & =\mathbb{E}[\mathbf{x}] \in \mathbb{R}^{D} \text { and } \boldsymbol{\Sigma}=\operatorname{cov}[\mathbf{x}]
\end{aligned}
$$

Note: the precision matrix or concentration matrix is just
the inverse covariance matrix, $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$

A spherical or isotropic covariance $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}_{D}$, has one free parameter.

$\mu=[0 ; 0]$

$\Sigma=[10 ; 0 I]$

$\mu=[0 ; 0]$
 $\Sigma=[.60 ; 0.6]$

$\mu=[0 ; 0]$
 $\Sigma=[20 ; 02]$

$\mu=[0 ; 0]$
 $\Sigma=[10.5 ; 0.51]$

$\mu=[0 ; 0]$
 $\Sigma=\left[\begin{array}{lll}1 & 0.8 ; & 0.8 \\ 1\end{array}\right]$

Now let's visualize as μ changes

$$
\begin{aligned}
& \mu=[1 ; 0] \\
& \Sigma=\left[\begin{array}{lll}
1 & 0 ; 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mu=[-.5 ; 0] \\
& \Sigma=\left[\begin{array}{lll}
1 & 0 ; 0 & 1
\end{array}\right]
\end{aligned}
$$

Level sets visualization

$\left.\begin{array}{lll}\mu=[0 ; 0\end{array}\right] \quad \mu=[0 ; 0]\left[\begin{array}{lll}1 & \mu & \mu=[0 ; 0\end{array}\right]$

The cumulative distribution function (cdf)

- For Gaussian distribution: $\Phi\left(x ; \mu, \sigma^{2}\right) \triangleq \int_{-\infty}^{x} \mathcal{N}\left(z \mid \mu, \sigma^{2}\right) d z$
- This integral has no closed
form expression, but is built in to most software packages.

$$
\begin{array}{cc}
\Phi(x ; \mu, \sigma)=\frac{1}{2}[1+\operatorname{erf}(z / \sqrt{2})] \quad \text { where } z=(x-\mu) / \sigma \text { and } \\
& \operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\end{array}
$$

(a) Plot of the cdf for the standard normal, $\mathcal{N}(0,1)$.

(b) Corresponding pdf.

About your homework... Beta Distribution

Study it in detail - Homework

PDF

$$
\begin{aligned}
& \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)} \\
& \text { where } \mathrm{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
\end{aligned}
$$

Beta

Probability density function

Review: Probability of an Event

- $p(A)$ denotes the probability that the event A is true.
- For example:
- $A=$ a logical expression "it will rain tomorrow" We require that $0 \leq p(A) \leq 1$.
$p(A)=0$ means the event definitely will not happen
$p(A)=1$ means the event definitely will happen
$p(\bar{A})$ denotes the probability of the event not A

$$
p(\bar{A})=1-p(A)
$$

We also write:
$A=1$ to mean the event A is true.
$A=0$ to mean the event A is false.

Review: Fundamental Rules

$$
\begin{aligned}
p(A \vee B) & =p(A)+p(B)-p(A \wedge B) \\
& =p(A)+p(B) \text { if } A \text { and } B \text { are mutually exclusive } \\
p(A, B) & =p(A \wedge B)=p(A \mid B) p(B)
\end{aligned}
$$

$$
p(A)=\sum_{b} p(A, B)=\sum_{b} p(A \mid B=b) p(B=b)
$$

$$
p\left(X_{1: D}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{2}, X_{1}\right) p\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) \ldots p\left(X_{D} \mid X_{1: D-1}\right)
$$

- Independence (or unconditionally independent or marginally independent) denoted $\mathrm{X} \perp \mathrm{Y}$:

$$
X \perp Y \Longleftrightarrow p(X, Y)=p(X) p(Y)
$$

- Conditional Independence

$$
X \perp Y \mid Z \Longleftrightarrow p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z)
$$

Theorem: $\mathrm{X} \perp \mathrm{Y} \mid \mathrm{Z}$ iff there exist function g and h such that

$$
p(x, y \mid z)=g(x, z) h(y, z)
$$

for all x, y, z such that $p(z)>0$.

The conditional probability of event A, given that event B is true:

$$
p(A \mid B)=\frac{p(A, B)}{p(B)} \text { if } p(B)>0
$$

Bayes rule:

$$
p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}=\frac{p(X=x) p(Y=y \mid X=x)}{\sum_{x^{\prime}} p\left(X=x^{\prime}\right) p\left(Y=y \mid X=x^{\prime}\right)}
$$

Example: medical diagnosis

- Suppose I did a medical test for breast cancer, called a mammogram. If the test is positive, what is the probability I have cancer? (here $y=1$ means cancer is true, and $x=1$ means test is positive).
- Suppose I have cancer, the test will be positive with probability 0.8. I.e. $p(x=1 \mid y=1)=0.8$.
- If I conclude therefore 80% likely I have cancer. True or False?
- False!
- It ignores the prior probability of having breast cancer, which fortunately is quite low:
- $p(y=1)=0.004$

Using Byes Rule

$$
\begin{aligned}
p(y=1 \mid x=1) & =\frac{p(x=1 \mid y=1) p(y=1)}{p(x=1 \mid y=1) p(y=1)+p(x=1 \mid y=0) p(y=0)} \\
& =\frac{0.8 \times 0.004}{0.8 \times 0.004+0.1 \times 0.996}=0.031
\end{aligned}
$$

Where 1) $p(y=0)=1-p(y=1)=0.996$.
2) Take into account the fact that the test may be a false positive or false alarm. With current screening technology:
$p(x=1 \mid y=0)=0.1$
In other words, if I kest positive, I only have about a 3% chance of actually having breast cancer!

Generative classifier

$$
p(y=c \mid \mathbf{x}, \boldsymbol{\theta})=\frac{p(y=c \mid \boldsymbol{\theta}) p(\mathbf{x} \mid y=c, \boldsymbol{\theta})}{\sum_{c^{\prime}} p\left(y=c^{\prime} \mid \boldsymbol{\theta}\right) p\left(\mathbf{x} \mid y=c^{\prime}, \boldsymbol{\theta}\right)}
$$

This is called a generative classifier, since it specifies how to generate the data using the class- conditional density $p(x \mid y=c)$ and the class prior $p(y=c)$.

Change Gear to

The Generalized Linear Models (GLMs)

Prof. Weiqing Gu Harvey Mudd College Summer 2017

https://math189su17.github.io/project.html

What is the Generalized Linear Models?

Linear Model

$$
Y=m X+b \longrightarrow Y=\theta_{0}+\theta_{1} X_{1}
$$

$\mathrm{X}_{\mathrm{i}}=$ house features

$$
\begin{gathered}
Y=\theta_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\ldots+\theta_{n} X_{n} \\
Y=\mathbf{X}^{T} \theta \quad \text { Let } X_{0}=1
\end{gathered}
$$

(General) Linear Models

1. Extend predicted value to be vector valued. E.g. $Y_{1}=$ price, $Y_{2}=$ how many people buy houses with the given the same features ($X_{1}, X_{2}, \ldots, X_{n}$)
-> Multivariable regression
2. Extend \mathbf{X} to "catogrical". $X_{i}=$ values of $i^{\text {th }}$ category
3. Extend to Polvnomial fitting:
$Y=\theta_{0}+\theta_{1} X+\theta_{2} X^{2}+\ldots+\theta_{n} X^{n}$
It is still linear with respect to θ_{i} 's.

Generalized Linear Models

Using hypothesis related to exponential family: the major part of it is an exponential of something, that something is a Linear Model!

(General) Linear Models

Regression weights, onparameters of the linear model, each assesses the feature/factor, X_{i} 's contribution to predict the value of dependent variable Y.
Note $X_{0}=1$. If all $X_{i}=0$, we will predict that the value Y to be θ_{0}.

Story: How to predict Y from the knowledge of X_{i} ?
$\mathbf{X}^{T} \boldsymbol{\theta}=$ the estimation of Y . It may not be accurate, too high, or too low.
$\epsilon=$ what can not be predicted from the knowledge of $\mathbf{X}^{T} \theta \cdot \epsilon=Y-\mathbf{X}^{T} \theta$

The linear model answer the following questions:

- How do these independent factors $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ predict a single dependent variable (Y_{i})?
- What is the best predictor of Y_{i} given measured X_{i} ?
- Note for each Y_{i}, there is set of best weights.

$$
\left(Y_{1}, Y_{2}\right)=\left(\mathbf{X}^{T} \theta_{1}, \mathbf{X}^{T} \theta_{2}\right)=\mathbf{X}^{T}\left(\theta_{1}, \theta_{2}\right)
$$

Recall: For our linear model: $\quad y^{(i)}=\theta^{T} x^{(i)}+\epsilon^{(i)}$,

$$
\begin{gathered}
p\left(\epsilon^{(i)}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\epsilon^{(i)}\right)^{2}}{2 \sigma^{2}}\right) . \\
p\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \\
y^{(i)} \mid x^{(i)} ; \theta \sim \mathcal{N}\left(\theta^{T} x^{(i)}, \sigma^{2}\right)
\end{gathered}
$$

Given X (the design matrix, which contains all the $x^{(i)}$'s) and θ, what is the distribution of the $y^{(i)}$'s? The probability of the data is given by $p(\vec{y} \mid X ; \theta)$. This quantity is typically viewed a function of \vec{y} (and perhaps X), for a fixed value of θ. When we wish to explicitly view this as a function of θ, we will instead call it the likelihood function:

$$
L(\theta)=L(\theta ; X, \vec{y})=p(\vec{y} \mid X ; \theta) .
$$

$$
X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{T}- \\
-\left(x^{2}\right)^{T}- \\
\vdots \\
-\left(x^{(m)}\right)^{T}-
\end{array}\right] .
$$

$$
X \theta-\vec{y}=\left[\begin{array}{c}
\left(x^{(1)}\right)^{T} \theta \\
\vdots \\
\left(x^{(m)}\right)^{T} \theta
\end{array}\right]-\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right]
$$

Recap how we find the maximum-This gives a general method called Maximum Likelihood Estimation.

- Obtain the likelihood

$$
L(\mu)=f\left(y_{1}\right) \ldots f\left(y_{n}\right)
$$

- Log it - to make it easier \& fast in calculation. Keep the advantage of the linear predictor.

$\ln L(\mu)$

- Differential and set the derivative equal to 0 .

$$
\frac{d}{d \mu} \ln L(\mu)=0 \Rightarrow \hat{\mu}=\ldots
$$

- Check it is a maximum:

Find parameters for the GLMs

- Obtain a likelihood function
- Log it to make it easier in differentiate
- Use the link function to replace the means resulting a function in the parameters.
- Differentiate with respect to the parameters and set the derivatives all to zero and solve for the optimal parameters.

A GLM using
Multinomial distributions which we have shown that they exponential family distributions.

Recall: Generally an experiment with m outcomes with respective probabilities $p_{1}, p_{2}, \ldots, p_{m}$ is performed n times independently.
Let $x_{i}=$ \# of times outcome i appears, $i=1,2, . . ., m$
Then $P\left(x_{1}=k_{1}, x_{2}=k_{2}, \ldots, x_{m}=k_{m}\right)=$?

- Work out details with the students on the board.

Generalized Linear Models (GLMs)

- Use GLMs and exponential family to get Softmax Regression.
- Recall: What is an exponential family? A class of distributions is in the exponential family if

$$
p(y ; \eta)=b(y) \exp \left(\eta^{T} T(y)-a(\eta)\right)
$$

- η = the natural parameter (or the canonical parameter) of the distribution
- $T(y)=$ the sufficient statistic (often $T(y)=y)$
- $a(\eta)$ is the log partition function.

The quantity $\mathrm{e}^{-\mathrm{a}(\mathrm{n})}$ essentially plays the role of a normalization constant, that makes sure the distribution $p(y ; \eta)$ sums/integrates over y to 1 .

Let T, a and b fixed and let the parameter η vary, then it defines a family of distribution. i.e. We get different distributions within this family.

Bernoulli distributions are exponential family distribution.

- Work out details with the students on the board.

Gaussian distributions are exponential family distribution.

$$
\begin{aligned}
p(y ; \mu) & =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(y-\mu)^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \cdot \exp \left(\mu y-\frac{1}{2} \mu^{2}\right)
\end{aligned}
$$

Compare:

$$
p(y ; \eta)=b(y) \exp \left(\eta^{T} T(y)-a(\eta)\right)
$$

We get:

$$
\begin{aligned}
\eta & =\mu \\
T(y) & =y \\
a(\eta) & =\mu^{2} / 2 \\
& =\eta^{2} / 2 \\
b(y) & =(1 / \sqrt{2 \pi}) \exp \left(-y^{2} / 2\right)
\end{aligned}
$$

Example of Constructing GLMs

Note: you need to know which distribution models what kind of problems (Reading assignment)

- Suppose you want to build a model to estimate the number (y) of customers arriving in your store in any given hour, based on certain features x such as store promotions, recent advertising, weather, day-of-week, etc.
- We know that the Poisson distribution usually gives a good model for numbers of visitors.
- Knowing this, how can we come up with a model for this problem?
- Fortunately, the Poisson is an exponential family distribution, so we can apply a Generalized Linear Model (GLM). (Homework or exam problem?)
- Lots of known distributions are exponential families.
- Here, we will describe a method for constructing GLM models for problems such as these.

Assumptions for Generalized Linear Models

- In generally, consider a classification or regression problem where we would like to predict the value of some random variable y as a function of x.
- To derive a GLM for this problem, we will make the following three assumptions about the conditional distribution of y given x and about our model:
- 1. y |x; θ ~Exponential Family(η). I.e., given x and θ, the distribution of y follows some exponential family distribution, with parameter η.
- 2. Given x, our goal is to predict the expected value of $T(y)$ given x. Since often $T(y)=y$, so this means we would like the prediction $\mathrm{h}(\mathrm{x})$ output by our learned hypothesis h to satisfy $\mathrm{h}(\mathrm{x})=\mathrm{E}[\mathrm{y} \mid \mathrm{x}]$. (Note that this assumption is satisfied in the choices for $h_{\theta}(x)$ for both logistic regression and linear regression. For instance, in logistic regression, we had
$\left.h_{\theta}(x)=p(y=1 \mid x ; \theta)=0 \cdot p(y=0 \mid x ; \theta)+1 \cdot p(y=1 \mid x ; \theta)=E[y \mid x ; \theta].\right)$
- 3. The natural parameter η and the inputs x are related linearly: $\eta=\theta^{\top} x$. (Or, if η is vector-valued, then $\eta_{i}=\theta_{i}{ }^{\top} x$.)

Examples: Least square and Logistic regression are GLM family of models

$$
\begin{aligned}
h_{\theta}(x) & =E[y \mid x ; \theta] \\
& =\mu \\
& =\eta \\
& =\theta^{T} x .
\end{aligned}
$$

$$
\begin{aligned}
h_{\theta}(x) & =E[y \mid x ; \theta] \\
& =\phi \\
& =1 /\left(1+e^{-\eta}\right) \\
& =1 /\left(1+e^{-\theta^{T} x}\right)
\end{aligned}
$$

Given that y is binary-valued, it therefore seems natural to choose the Bernoulli family of distributions to model the conditional distribution of y given x. In our formulation of the Bernoulli distribution as an exponential family distribution, we had $\phi=1 /\left(1+e^{-n}\right)$. Furthermore, note that if $y \mid x ; \theta \sim \operatorname{Bernoulli}(\phi)$, then $E[y \mid x ; \theta]=\phi$.

Softmax Regression

- Let's look at another example of a GLM. Consider a classification problem in which the response variable y $\in\{1,2, \ldots, k\}$.
- For example, rather than classifying email into the two classes spam or not-spam-which would have been a binary classification problem - this time we want to classify it into four classes, such as spam, family-mail, friends-mail, and work-related mail. The response variable is still discrete, but can now take on more than two values. We will thus model it as distributed according to a multinomial distribution.

Details of Softmax Regression

- Work out details with the students on the board.

Today we also learn:

Schur Complement

- This is related how we triage data and solve a smaller problem involving big data first.
- Smaller system to solve
- Smaller matrix to invert
- The process can be iterated to make the problem to a smaller and smaller size. (This is very powerful for dealing with big data. This is one of the dimension reduction methods.)
- It is also very important for study the Conditional Gaussian distribution.
- Work out details with the students on the board.

What is a conditional distribution?

- A conditional distribution is a probability distribution for a sub-population.
- In other words, it shows the probability that a randomly selected item in a sub-population has a characteristic you're interested in.
- For example, if you are studying eye colors (the population) you might want to know how many people have blue eyes (the subpopulation).

Conditional Distribution Discrete example

Eye Color						
Gender		Blue	Brown	Green/Other	Total	
	Male	15	20	8	43	
	Female	5	25	7	37	
	Total	20	45	15	80	

e.g. We restrict to only on Blue eyes, the conditional distribution is Male:15 and Femaie:5.
This is called a conditional distribution.

Conditional Distribution (continuous)

If N-dimensional \mathbf{x} is partitioned as follows

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right] \text { with sizes }\left[\begin{array}{c}
q \times 1 \\
(N-q) \times 1
\end{array}\right]
$$

and accordingly $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are partitioned as follows

$$
\begin{aligned}
& \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \text { with sizes }\left[\begin{array}{c}
q \times 1 \\
(N-q) \times 1
\end{array}\right] \\
& \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \text { with sizes }\left[\begin{array}{cc}
q \times q & q \times(N-q) \\
(N-q) \times q & (N-q) \times(N-q)
\end{array}\right]
\end{aligned}
$$

then the distribution of \mathbf{x}_{1} conditional on $\mathbf{x}_{2}=\mathbf{a}$ is multivariate normal $\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}=\mathbf{a}\right) \sim N(\bar{\mu}, \bar{\Sigma})$ where

$$
\overline{\boldsymbol{\mu}}=\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{a}-\boldsymbol{\mu}_{2}\right)
$$

$\overline{\boldsymbol{\Sigma}}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \longleftarrow$ the Schur complement of $\boldsymbol{\Sigma}_{22}$ in $\boldsymbol{\Sigma}$

Back up slides

Note: Polynomial data fitting is also a linear model, also will be resulted in the normal equation

So, a good fit to the data is to find a, b, and c such that $\mathrm{y}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is "closest" to the data. In the least squares sense the means for $r_{i}=y_{i}-y\left(x_{i}\right)=y_{i}-\left(a x_{i}^{2}+b x_{i}+c\right)$.

Same geometric argument works to get the normal equation!

When we have polynomials with multi-variables, the size of the $X^{\top} X$ can be very large.

