Mathematics of Big Data, |
Lecture 5:
Naive Bayes,
L1 Regularization, Scarsity, Lasso,
Support Vector Machines, and Kernels

Weiqing Gu
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College
Summer 2017

@2017 by Weiging Gu. All rights reserved



Today’s topics

* Naive Bayes

* L1 Regularization, Sparsity, &
Lasso

* Support Vector Machines
* Kernel Methods



Today’s topics

* Naive Bayes



e Work out details with the students
on the blackboard.



Recall the Chain Rule

“73371):
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Now the "naive" conditional independence assumptions come into play: assume that each feature F;
is conditionally independent of every other feature F' for j # 4, given the category C. This means

that
p(fﬁi‘fﬂiﬂ, vovyidny Ck) = P(%‘Ck) :
Thus, the joint model can be expressed as

p(Ck‘wla“'axn)Ocp(Ok,iL'l,...,a;n)
o p(Cr) p(21/C) p(2s|Cr) plas|Cy) -

Hp wz’Ck

=1



Applications of Naive Bayes

1. Text categorization: Judging a document belonging
— Legitimates,
— Sports,
— Politics,
— Sciences,
— Spams
— Etc.
e Using word frequencies as features.
2. Medical diagnosis.
More advanced method in above applications: SVM



Example on Naive Bayes : Given historic
weather Data and Yes-No Answers to

Play Tennis

Weather Data Set
Oy

Altrib utes.N

&

Class
Attribute

J

Day Outlook Temp Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot mile]lg =jigelgle) No
D3 Overcast Hot High VWeak Yes
D4 Rain Mild High Weak Y es
DS Rain Cool Normal VWeak h=1-]
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong he=-1-
D38 Sunny Mild mile]lg Weak No
D9 Sunny Cool Normal Weak h=1-
D10 Rain Mild Normal VWeak h=1
D11 Sunny Mild Normal =jigelgle h=1-]
D12 Overcast Mild mi{e]g Strong Yes
D13 Overcast Hot Normal VWeak Yes
D14 Rain Mild mile]lg =jdgelgle No




D= { (X(l)l y]_)l ceey (X(k)) yk)l"'l (X(n)l yn)
Heren =14
Give x, the kth day whether data.

y belongs {1, 0}, 1=yes-play and O=no-play,



Goal: Predict whether she is going to play
today if knowing today’s weather data

ouioos ey _uindy _piy

Sunny Cool High True

Give X = (x1 =Sunny, x2 = Cool, x3 = high, x4=True)
Predict for Y=1.

That is to find P(Y=1|X=above)




Weather Data Counts

Outlook

Temperature

Humidity

sunny 2
Overcast 4

Rainy

" v
ras

High
Normal

sunny 2/9

Overcast  4/9

Rainy

High

Normal



We can use the table as a Model

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

sunny i 3 Hot 2 Z High 3 4 False 6 . 0 5]
Overcast 4 0 Mild 4 . Mormal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/ 3/5 Hot 219 2/5  High 39 4/5 False 69 2/5 914 514
Overcast 49 0/5 Mid 49 2/5 MNormal &9 15 True 39 3/5

Rainy 39 2/5 Cool 39 15




[ | | o ]

Sunny Cool High True

Temperature Humidity

'Ir."' Fa) L-:
i o

sunny 3 Hot 2 High
Overcast 4 i Mild £ Normal
Rainy
fate

High 3/9

Normal 6/d




For
Class=Yes

Likelihood for the class play tennis equals to Yes
Yes =2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053




Likelihood of the New Day Outcome

Sunny Cool High

Likelihood of the two classes attribute Play can take
Which f:lass
For each Class value (Yes and No) value Is more

likely?
Yes =2/9 x 3/9 x 3/9 x3/9 x 9/14 = 0.0053 l

No = 3/5 x 1/5 x 4/5 x 3/5 x5/14 = 0.0206



Likelihood of the New Day Outcome

Convert into probabilities by normalization:

Prob (Class = Yes) = 0.0053/(0.0053 + 0.0206)= 0.205
Prob (Class = No) = 0.0206 / (0.0053 + 0.0206) = 0.795

Probability for NOT
Play tennis is ~80%




What is “Naive Bayes”?

Naive Bayes Models

Naive Bayes

Naive Bayes classifiers



What is “Naive Bayes Models”?

* Naive Bayes Model is a conditional
probability model:

* Given a problem instance to be classified,
represented by a vector
X = (T1,...,2Zy)
representing some n features (independent
variables), it assigns to this instance probabilities
p(Ck|T1,. .., %n)
for each of K possible outcomes or classes (,



Recall Bayes' theorem, the conditional

probability
p(Ck) p(x|Ck)
p(Ck|x) = ——
p(x)
esian probabilitvt.erminologvi pI'iOr X hkellhood
posterior =

evidence



What are Probabilistic Classifiers?

Probabilistic classifier is a classifier that is able to predict,
given a sample input, a probability distribution over a set
of classes, rather than only outputting the most likely class
that the sample should belong to. Probabilistic classifiers
provide classification with a degree of certainty, which can
be useful in its own right, or when combining classifiers
into ensembles.

Binary probabilistic classifiers are also called binomial
regression models in statistics. In econometrics, probabilistic
classification in general is called discrete choice.

"Hard" classification: using the optimal decision rule:
y = argmax, Pr(Y = y|X)

That is to say: the predicted class is that which has the highest probability.



What are naive Bayes classifiers?

* Naive Bayes classifiers are a family of simple
probabilistic classifiers based on applying
Bayes' theorem with strong (naive)
independence assumptions between the
features.



Today’s topics

* L1 Regularization, Sparsity, &
Lasso



Regularization and Model Selection
 Regularization is a technique used to solve the
overfiting problem in statistical models.

* What is overfiting?

Size Size Size‘ ‘
Op + 601 0o + 01 + G222 0o + 01z + O22% + O32° + O4z*
High bias “Just right” High variance
(underfit) (overfit)

Example: When someone wants to predict the price of a house based on its size, she
tries to select among several different models. For instance, she tries to use
polynomial regression model hy(x) = g(6, + 0,x + 0,x2+ - - - + B,x ¥ ), and wish to decide
if which k would be best fit the data.

Q: How can we automatically select a model that avoid high bias and high variance?



What is regularization in machine learning?
When do we need to use it?

* Regularization is a technique used in an attempt
to solve the overfitting problem in statistical
models.

* Here is an intuitive example: Let’s say we want to
model and predict the wage of someone based

on his age.

 We will first try a linear regression model with
age as an independent variable and wage as a
dependent one. This model will mostly fail, since
it is too simple.



 Then, you may add more data into you model such as the sex and
the education of each individual.

* Your model becomes more interesting and more complex.

* You find out that your result are quite good but not as perfect as
you wish.

* So you add more variables: location, profession of parents, social
background, number of children, weight, number of books,
preferred color, best meal, last holidays destination and so on and
so forth

* But then your model becomes overfitting.

* How could we teach the machine select the most important
features/variables?

Key: Regularization is to teach machine to find a model
avoid under- or over-fitting, do just “right” fitting.

We will need certain metric so that the machine can use it to set
none important variables to zeros! We consider L, metric.



What is Lp norm?

1
Iz[l, = (|z1|” + |z2” + -« + |za[")7 .

n 1/p
|2[p := (Z ll‘i\p)
t=1

AN D
NN

p=1 p=2 P = 0C

B | -

p=



L, Norm For vectors in R3
x|, <1

O@ +~

P=0Q U<p<l p =

Note: As the value of p decreases, the size of the
corresponding L, space also decreases. This can

be seen visually when comparing the the size of
the spaces of signals, in three dimensions, for
which the L, norm is less than or equal to one. The
volume of these L, “balls” decreases with p.



Switching gear:
What is LASSO? 5™
LASSO= Least Absolute Shrinkage and Selection Operator

 The LASSO is a regression method that involves penalizing the
absolute size of the regression coefficients.

e By penalizing (or equivalently constraining the sum of the
absolute values of the estimates) you end up in a situation
where some of the parameter estimates may be exactly zero.
The larger the penalty applied, the further estimates are shrunk
towards zero.

* This is convenient when we want some automatic feature/
variable selection, or when dealing with highly correlated
predictors, where standard regression will usually have
regression coefficients that are 'too large or too many'.



Compare LASSO and Ridge Regressions

D
B0 = argmin |ly — XB[3+ 1) |Bj
BERP e

= argmin ||y — XB|5 + X ||B]1
BERP N e’ S~
Loss Penalty

Bridee — argmin ||y — X B3 + |83
BERP

The only difference between the lasso problem and ridge regression
is that the latter uses a (squared) #2 penalty || 3|3, while the

former uses an ¢; penalty ||3||1. But even though these problems
look similar, their solutions behave very differently



Why does the lasso give sparse
solution (i.e. many zero coefficients)?

8.8 S ne S B, S ne S

(From page 71 of ESL)



Note the solution ot 1. That is
is R. =0 and 0 say the Ridge
R =11, That is regression does
‘ — Sélect R, and _ not know how to
shrink it to 0. get rid of the
small 3,
= -
B, B,

Figure 3.12: FEstimation picture for the lasso (left)
and ridge regression (vight). Shouwn are condtours of the
ervor and constraint functions. The solid blue areas are
the constraint regions |3, + |Fz2| < t and Hf + ‘3:,' < 12,
respectively. while the red ellipses are the conlours of

the least squares error funclion.



Key: Lesson is able to perform variable selection in the linear model.

The tuning parameter A controls the strength of the penalty, and (like ridge
regression) we get B lasso = the linear regression estimate when A =0, and B"lasso
=0whenA=oc0

For A in between these two extremes, we are balancing two ideas: fitting a linear
model of y on X, and shrinking the coefficients. But the nature of the "1 penalty
causes some coefficients to be shrunken to zero exactly.

This is what makes the lasso substantially different from ridge regression: it is able
to perform variable selection in the linear model.

As A increases, more coefficients are set to zero (less variables are selected), and
among the nonzero coefficients, more shrinkage is employed.



Let the machine do the job for you!

e 1. Randomly split S into Strain (say, 70% of the
data) and Scv (the remaining 30%). Here, Scv
is called the hold-out cross validation set.

* 2. Train each model M. on Strain only, to get
some hypothesis h. .

* 3. Select and output the hypothesis h. that had
the smallest error g, (h,) on the hold out
cross validation set.



Regularization path

As we increase ), the solution vector w(\) will tend to get sparser, although not necessarily
monotonically. We can plot the values @;(\) vs A for each feature j; this is known as the
regularization path.

This is illustrated for ridge regression in Figure 13.7(a), where we plot @, () as the regularizer
A decreases. We see that when A\ = oo, all the coefficients are zero. But for any finite value of
A, all coefficients are non-zero; furthermore, they increase in magnitude as A is decreased.

In Figure 13.7(b), we plot the analogous result for lasso. As we move to the right, the upper
bound on the ¢; penalty, B, increases. When B = 0, all the coefficients are zero. As we increase

B, the coefficients gradually “turn on”. But for any value between 0 and B,,.. = ||Wors||1,
the solution is sparse.*



About your homework...

Laplace distribution

A random variable has a Laplace(y, b)

distribution if its probability density function is
L, nor

1 z — pl
b I
fle | nb) = o e~

Bh—

exp( - ) ifx <




Examples of Laplace distribution

05 |

l I
u=0, b=1 =—
ﬂ p:O, D=2  —
0.4 =0, b=4 —
u=-5, b=4
0.3 —
0.2

0.1




Today’s topics

 Support Vector Machines (SVM)



Support Vector Machine (SVM)

R o
o | 1
: : - 0
0 0 ’ il - a
0 v
0 00 0 0
o ¥ iy 0
0 0
o |

Small Margin %rge Margin

* Key: Gain an geometric intuition:

 Want to maximize the margin to increase
the confidence of your prediction.

e SVM is a typical example of Machine learning from
of Geometric perspective.

* Thereis a procedure for geometric approaches.



Separating Hyper-plane and Support Vectors

The points with the smallest
A margins are exactly the ones
closest to the decision boundary.

X These three points are called
the support vectors!

A maximum margin separating

hyé\iym?




Geometric Analysis behind the
Support Vector Machine (SVM)

* One of the powerful machine learning
techniques.

 Working out details with the students on the
board.



Here we first assume that the data is linear separable. We
will deal with the case when data is not linear separable
later; just need to make a clever “transformation”.

K(x;.X;) = ¢(x) (X)) .
< : |
& Margin= 2/ vw'w
Misclassified @
point :
<
o °
®
Support Vector ."'. o
@ Support Vector
_ o
®
. ®
wip(x) + b = -1
: e
wih(x)+ b =0
: ®
wip(x) + b =+1 H ®



The following slides closely follow Prof. Andrew Ng’ lecture notes on SVM

Functional Margin
* Recall: we define the functional margin of
(w, b) with respect to the training example

A =y (wlz 4 b).

Given a training set S = {(z¥,y");7 = 1,...,m}, we also define the
function margin of (w, b) with respect to S to be the smallest of the functional
margins of the individual training examples. Denoted by #, this can therefore
be written:

4= min 49,

1=1,....m



Geometric Margins




Q: How to Teach the Machine to Deal w/ Margin Swinging Problem?

The figure shows an optimal margin classifier, and when a single
outlier is added, it causes the decision boundary to make a dramatic
swing, and the resulting classifier has a much smaller margin.

An outlier is added.

] -

The decision bdry
fias a big swing.

Ans: Using L, regularization!

The parameter C controls the relative

min, 4 §Hw||2 n CZ& weighting 2between the twin goals of'makmg
i1 the | |w] |2 small (which we saw earlier
st yPD(wlz® +b) >1-¢, i=1,...,m makesthe margin large) and of ensuring that

£>0, i=1,...,m. most examples have large functional margin.



Key Steps in the Geometric Approach

Gain an geometric intuition: For SVM--Want to maximize the
margin to increase the confidence of your prediction.

Write down your geometrical intuition Mathematically.

Come up with a cost function: Here is the margin. Want to
maximize the margin.

Figure out what are the constraints involved.

Make the problem into a convex problem (if possible to do so)
if the optimization you formed is not convex.

For SVM, we will make it into a quadratic program problem.
Use exiting QP software package to solve the problem.

Use different way to solve it. (Later use an dual method.)
Generate to solve more complicated problems/cases.



Today’s topics

e Kernel Methods



Kernel Methods

* Feature map
e Kernel

This is a plane!

hen z1 =0, z3 =b2,
and

When z3 =0, z1 = a2.
And z2 and by any
thing in R.



Feature Map

e Examples

o(z) =

8 8
w




Example

Suppose z, z € R™, and consider

K(x, 2z) = (z' 2)?.

n n
=1 7=1
n n
T
2 LiTjzizj

i=1 j=1

n

Y (miz;)(2i2))

2,7=1



Thus, we see that K(z, 2) = ¢(z)? ¢(z), where the feature mapping ¢ is given
(shown here for the case of n = 3) by

I1T1
L1722
L1T3
L2
d(z) = | Z2T2
LoT3
I3T1
L3T9
I3T3

Note that whereas calculating the high-dimensional ¢(z) requires O(n?) time,
finding K(z, z) takes only O(n) time—linear in the dimension of the input
attributes.



K(z,2) = (z'2+¢)°

n n

- Z (zi2;)(22;) + Z(\/Q_sz)(\@zz)

ij=1 =1

o(z) =

K(z,2) = ¢(z) ¢(2)




More broadly, the kernel K(z,z) = (272 + ¢)? corresponds to a feature
mapping to an ("jjd) feature space, corresponding of all monomials of the
form z;, x;, ... x; that are up to order d. However, despite working in this
O(n?)-dimensional space, computing K (z, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.



Since the algorithm can be written entirely in terms of the inner prod-
ucts (z, z), this means that we would replace all those inner products with
(#(z), d(2)). Specificically, given a feature mapping ¢, we define the corre-
sponding Kernel to be

K(z,2) = $(2)79(2).



Now, let’s talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if ¢(z) and ¢(z)
are close together, then we might expect K(z,z) = ¢(x)T¢(2) to be large.
Conversely, if ¢(x) and ¢(z) are far apart—say nearly orthogonal to each
other—then K(z, z) = ¢(z)? ¢(2) will be small. So, we can think of K(z, 2)
as some measurement of how similar are ¢(x) and ¢(z), or of how similar are
z and z.



Given this intuition, suppose that for some learning problem that you're
working on, you’ve come up with some function K (z, z) that you think might
be a reasonable measure of how similar z and z are. For instance, perhaps

you chose
L2
K(x,z) =exp (_||a: il )

202

This is a resonable measure of z and 2’s similarity, and is close to 1 when
x and z are close, and near 0 when x and z are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example, the

answer is yes. (This kernel is called the Gaussian kernel, and corresponds
to an infinite dimensional feature mapping ¢.) But more broadly, given some

function K, how can we tell if it’s a valid kernel; i.e., can we tell if there is
some feature mapping ¢ so that K(z, z) = ¢(x)?¢(z) for all z, 27




Necessary and Sufficient Condition for
a valid Kernel

Theorem (Mercer). Let K : R® x R® — R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{z0) ..., 2™} (m < o), the corresponding kernel matrix is symmetric
positive semi-definite.

Given a function K, apart from trying to find a feature mapping ¢ that
corresponds to it, this theorem therefore gives another way of testing if it is
a valid kernel.



e Work out details with the students on the
blackboard.



Suppose for now that K is indeed a valid kernel corresponding to some
feature mapping ¢. Now, consider some finite set of m points (not necessarily
the training set) {z(!),...,z(™}, and let a square, m-by-m matrix K be
defined so that its (i,j)-entry is given by K;; = K(z®,z()). This matrix
is called the Kernel matrix. Note that we’ve overloaded the notation and
used K to denote both the kernel function K(z, z) and the kernel matrix K,
due to their obvious close relationship.



K is positive semi-definite

Now, if K is a valid Kernel, then K;; = K(zW,z)) = ¢(z)T¢(z)) =
p(xNT¢(z®) = K (2, 2%) = K;;, and hence K must be symmetric. More-
over, letting ¢x(x) denote the k-th coordinate of the vector ¢(x), we find that
for any vector z, we have

ZTKZ — ZZZZKZJZ]
— Z Z zz-gb(x(i))Tqﬁ(x(j))zj
= > > a) oz
i g k
= > > ) z2ipp(@)pr(a)z
ki j
2
y: (y: ziqﬁk(x(i)))
k i

0.

'V



* More details on Support Vector Machine
* The following slides are read only



Model the problem into an
optimization problem

max~ wb 7

st. yDwlz® +b) >y, i=1,...

|lw|| = 1.

* But this is not a convex problem!
* How to change it to a convex problem?
* Possible?



Cleverly build | |W] | into the cost
and use scalar invariant smartly.

 Recall: we can add an arbitrary scaling constraint on wand b
without changing anything. This is the key idea we are going to use

cleverly.
 We will introduce the scaling constraint that the functional margin

of w, b with respect to the training set must be 1.

4 =1.



Successfully transform the original optimization
problem into a convex optimization problem.

1 2
1kl
s.t. yD(wlz® +b)>1, i=1,...,m

min%w,b

This is a convex optimization problem since the objective
function is convex and the constraints are linear/affine.

The solution to this problem is called the optimal margin
classifier.

This optimization problem can be solved using
commercial quadratic programming (QP) code.



Lagrange Duality

Consider a general problem:

min,,  f(w)
s.t. hi(w)=0, 1=1,...,L

Define the Lagrangian:

[
L(w,B) = f(w)+ )  Bihi(w)

1=1

Here, the 6i’s are called the Lagrange multipliers.



Key steps involved

* Find the partial derivatives and set them to

Zero.
oL oL

ow; =0 0B; B

0,

e Solve for w and [.

* Q: How to deal with constrained optimization
problems in which there are inequality as well
as equality constraint?



Consider

min,,  f(w)
s.t. gi(w) <0, i=1,...,k
hi(w)=0, i=1,...,1

This optimization problem is called
the primal optimization problem.



* Back up slides
 Read only



Generalized Lagrangian

[
L(w,a, ) = Zazgz )+ Y Bihi(w)
=)

Here, the «;’s and (3;’s are the Lagrange multipliers.

Similar as before.



Key: How to get rid of the inequalities?

Consider:

Op(w) = ag.l?;}éoﬁ(w’a’ﬁ)'
\ B:ay>

Primal optimization



Op(w) = a,g}ggczoﬁ(w, a, ).
Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either g;(w) > 0 or h;(w) # 0
for some ¢), then you should be able to verify that

bp(w) = max f(w)+) oigi(w)+ ) Bihi(w) (1)
= 00. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then Op(w) = f(w). Hence,

bp(w) = {

f(w) if w satisfies primal constraints
o0 otherwise.



We essentially be able to get rid of the
inequalities.

Thus, Op takes the same value as the objective in our problem for all val-
ues of w that satisfies the primal constraints, and is positive infinity if the
constraints are violated. Hence, if we consider the minimization problem

minfp(w) = min max L(w,a,f),
w w o af:a;>0

we see that it is the same problem (i.e., and has the same solutions as) our
original, primal problem. For later use, we also define the optimal value of
the objective to be p* = min,, fp(w); we call this the value of the primal
problem.




The Dual Optimization Problem

Now, let’s look at a slightly different problem. We define
Op(a, B) = min L(w, &, B).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of fp we were optimizing (maximizing) with respect to a, 3, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:

a,g:lgf-(zo Op(a, B) = a,}'ﬁf}f{go mulJn L(w,a,pB).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d* = maxy s.q.>0 0p(w).



Relations between Max-Min and
Min-Max Problems

How are the primal and the dual problems related? It can easily be shown
that

d"= max minL(w,e,f) <min max L(w,a,fB)=7p"
o,f:0;20 w ( ! ”B)_ w a,f:0;20 ( ’ "B) p

(You should convince yourself of this; this follows from the “max min” of a

function always being less than or equal to the “min max.”) However, under

certain conditions, we will have The proof is out of scope of

" % This course.
d=p,

so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.



Q: When do the primal and dual
problems have same solution?

Suppose f and the g;'s are convex,® and the h;’s are affine.* Suppose
further that the constraints g; are (strictly) feasible; this means that there
exists some w so that g;(w) < 0 for all .

Under our above assumptions, there must exist w*, a*, B* so that w* is the
solution to the primal problem, o*, B* are the solution to the dual problem,
and moreover p* = d* = L(w*, o, f*). Moreover, w*, o* and * satisfy the
Karush-Kuhn-Tucker (KKT) conditions

SWhen f has a Hessian, then it is convex if and only if the Hessian is positive semi-
definite. For instance, f(w) = w!w is convex; similarly, all linear (and affine) functions
are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

“L.e., there exists a;, b;, so that h;(w) = alw + b;. “Affine” means the same thing as

linear, except that we also allow the extra intercept term b;.



KKT Conditions

Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

a x % % _ .
8wi£(w,a,ﬁ) =0, 1=1,...,n (3)
8 X % Nk _ .
8—@5(10,05,[3) 0, i=1,...,1 (4)
a;gi(w*) = 0, i=1,...,k (5)
gi(w*) S y U= 17 9 k (6)
of >0, i=1,...,k (7)

Moreover, if some w*, o, f* satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.



KKT dual complementarity condition
¥ ¥ '
o;gi(w) = 0, i=1,...,k (5)

We draw attention to Equation (5), which is called the KKT dual com-
plementarity condition. Specifically, it implies that if o > 0, then g;(w*) =
0. (Le., the “g;(w) < 0” constraint is active, meaning it holds with equality
rather than with inequality.) Later on, this will be key for showing that the
SVM has only a small number of “support vectors”; the KKT dual comple-

mentarity condition will also give us our convergence test when we talk about
the SMO algorithm.



Optimal margin classifiers--SVM

A

1 2
2|l

st yD(wle® +0)>1, i=1,...,m

MLy 4,b

We can write the constraints as
gi(w) = —yD(wTz® +b) +1<0.

We have one such constraint for each training example. Note that from the
KKT dual complementarity condition, we will have a; > 0 only for the train-
ing examples that have functional margin exactly equal to one (i.e., the ones
corresponding to constraints that hold with equality, g;(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.



Back to SVM

1 & ) )
L(w,b,0) = o] = > e [y @z +b) 1]

1=1

Note that there’re only “a;” but no “B;” Lagrange multipliers, since the

problem has only inequality constraints.
Let’s find the dual form of the problem. To do so, we need to first
minimize L£(w,b,a) with respect to w and b (for fixed a), to get Op, which

we’ll do by setting the derivatives of £ with respect to w and b to zero. We
have:

Vul(w,b,a) =w — Z aiy(i)x(i) =0

1=1



This implies that
W= Z a1z, (9)
i=1

As for the derivative with respect to b, we obtain
a m
—£ (w, b, ) Z = (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w,b, a) i — % i Doy (z9) gl — bilaz-y(i).

But from Equation (10), the last term must be zero, so we obtain

L(w,b,a) = Z '__ZU Dy ()T,

t,7=1



Dual Optimization Problem-SVM

Recall that we got to the equation above by minimizing £ with respect to w
and b. Putting this together with the constraints o; > 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

max, W(o) ZO‘ _ f:y(i)y(j)aiaj(x(i),x(j))
i ',j=1 T

Key: All the x-data is in this
inner product!

st a; >0, z=1,...,

Zm:az'y(i) =
i=1



From this dual point view, we will see
SVM can be generated by replacing
the inner product by a Kernel!

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.



Exercise

You should also be able to verify that the conditions required for p* =
d* and the KKT conditions (Equations 3-7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the o;’s. We’ll talk later

about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the a’s that maximize W («)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the a’s. Having found w*, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

maxi:y(i)z_l w*Tl'(z) + mini:y(z‘)zl w*TfE(i)

b = 5

(11)



Cool thing about this dual method

Before moving on, let’s also take a more careful look at Equation (9),
which gives the optimal value of w in terms of (the optimal value of) «.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input z. We would then calculate w’z + b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

. T
wiz +b = (Z az-y(i)a:(i)) z+b (12)
i=1

m
= Z oy (z® x) +b. (13)
i=1
Hence, if we've found the ¢;’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the «;’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.



The SMO algorithm
(Read and Exercise)

max,, Z o — — Z y Dy Doy (@ z0). (17)

1,7=1

S.t. OgaiSC, i=1,...,m (18)
> aiy? =0 (19)
=1

Let’s say we have set of a;’s that satisfy the constraints (18-19). Now,
suppose we want to hold as, ..., a,, fixed, and take a coordinate ascent step
and reoptimize the objective with respect to ;. Can we make any progress?
The answer is no, because the constraint (19) ensures that

Ofly Z szy



Or, by multiplying both sides by y!), we equivalently have
oy = —yM Z oy ®.
i=2

(This step used the fact that y®) € {—1,1}, and hence (y)? = 1.) Hence,
oy is exactly determined by the other o;’s, and if we were to hold as, ..., a,,
fixed, then we can’t make any change to a; without violating the con-

straint (19) in the optimization problem.



Thus, if we want to update some subject of the o;’s, we must update at
least two of them simultaneously in order to keep satistying the constraints.
This motivates the SMO algorithm, which simply does the following;:

Repeat till convergence {

1. Select some pair o; and «; to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W («) with respect to a; and «;, while holding all the
other ay’s (k # 1, ) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions (Equations 14-16) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)






The key reason that SMO is an efficient algorithm is that the update to
o;, o can be computed very efficiently. Let’s now briefly sketch the main
ideas for deriving the efficient update.

Let’s say we currently have some setting of the o;’s that satisfy the con-
straints (18-19), and suppose we’ve decided to hold ag, ..., a,, fixed, and
want to reoptimize W (ay, as,. .., ay,) with respect to a; and as (subject to
the constraints). From (19), we require that

1=3

Since the right hand side is fixed (as we've fixed as, ... a,,), we can just let
it be denoted by some constant (:

aly(l) + agy(2) — C (20)



1 (2)
ony "+ oy “=




From the constraints (18), we know that a; and as must lie within the box
(0, C] x [0, C] shown. Also plotted is the line a;;y™") + apy® = ¢, on which we
know «a; and as must lie. Note also that, from these constraints, we know
L < as < H; otherwise, (aj,as) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line a;y™M + ay® = ¢ looks like, this won’t always necessarily be
the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissable values for oy that will ensure that oy, as

lie within the box [0,C] x [0, C].



Using Equation (20), we can also write a; as a function of as:

ar = (¢ — aay®)y™.

(Check this derivation yourself; we again used the fact that y) € {—1,1} so
that (y())2 = 1.) Hence, the objective W (a) can be written

W(ala Qg, ..., Olm) — W((C T a2y(2))y(1)7 azg, ..., CVm)-

Treating as,...,a,, as constants, you should be able to verify that this is
just some quadratic function in as. I.e., this can also be expressed in the
form aas + basy + ¢ for some appropriate a, b, and c. If we ignore the “box”
constraints (18) (or, equivalently, that L < ay < H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.



We'll let af®”"""P? denote the resulting value of ap. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to ay but subject to the box constraint, then we can find the resulting

new,unclipped

value optimal simply by taking o, and “clipping” it to lie in the

L, H| interval, to get

H if a;uew,unclipped > H
agew _ agew,unclipped if I S agew,unclipped S H

I if a;ze'w,unclipped < I



Finally, having found the af*”, we can use Equation (20) to go back and find
the optimal value of a7¢”.

There’re a couple more details that are quite easy but that we’ll leave you
to read about yourself in Platt’s paper: One is the choice of the heuristics
used to select the next oy, a; to update; the other is how to update b as the

SMO algorithm is run.



