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Today’s	topics	

•  The	k-means	clustering	algorithm	
• Mixtures	of	Gaussians	
•  Jensen’s	inequality	
•  The	EM	(Expecta'on-Maximiza'on)	
Algorithm	



What	is	a	clustering	problem?	
A	clustering	problem	is	an	unsupervised	learning	problem	

•  Given	a	training	set	{x(1),	.	.	.	,	x(m)},	here	each	x(i)	is	in	Rn.	

•  Goal:	want	to	group	the	data	into	a	few	cohesive	“clusters.”		
	
•  Note:	the	difference	between	unsupervised	learning	and	

supervised	learning	is	that	no	labels	y(i)	are	given.	

	

In general, if only {x(1), . . . , x(m)} given for a problem, but no 
labels y(i) are given, then the problem is an unsupervised learning 
problem! 

 y(j)  = 0	 y(i)  = 1	

Supervised	learning	 Unsupervised	learning	



The	k-means	clustering	algorithm	



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		



Example	of	K-mean	clustering		
•  In	the	Figure	above	for	K-means	algorithm:	Training	examples	are	

shown	as	dots,	and	cluster	centroids	are	shown	as	crosses.		
•  (a)	Original	dataset.		
•  (b)	Random	ini-al	cluster	centroids	(in	this	instance,	not	chosen	to	

be	equal	to	two	training	examples).		
•  (c-f)	Illustra-on	of	running	two	itera-ons	of	k-means.		

•  In	each	itera-on,	we	assign	each	training	example	to	the	closest	
cluster	centroid	(shown	by	“pain-ng”	the	training	examples	the	
same	color	as	the	cluster	centroid	to	which	is	assigned);	then	we	
move	each	cluster	centroid	to	the	mean	of	the	points	assigned	to	it.	
(Best	viewed	in	color.)		

•  Images	courtesy	Michael	Jordan.	



Q:	Is	the	k-means	algorithm	
guaranteed	to	converge?	

•  Yes	it	is,	but	it	might	convergent	to	a	local	op-miza-on	point	instead	a	
global	one	in	following	sense.	

•  Define	the	distor-on	func-on	to	be:	
	
•  Here	J	measures	the	sum	of	squared	distances	between	each	training	

example	x(i)	and	the	cluster	centroid	μc(i)	to	which	it	has	been	assigned.		
•  It	can	be	shown	that	k-means	is	exactly	coordinate	descent	on	J.		
•  This	means	that	the	inner-loop	of	k-means	repeatedly	minimizes	J	with	

respect	to	c	while	holding	μ	fixed,	and	then	minimizes	J	with	respect	to	μ	
while	holding	c	fixed.		

•  Thus,	J	must	monotonically	decrease,	and	the	value	of	J	must	converge.	
(Usually,	this	implies	that	c	and	μ	will	converge	too.)	

•  In	theory,	it	is	possible	k-means	to	oscillate	between	a	few	different	
clusterings—i.e.,	a	few	different	values	for	c	and/or	μ—that	have	exactly	
the	same	value	of	J,	but	this	almost	never	happens	in	prac-ce.)	



Note:	The	distor'on	func'on	J	is	non-convex,	so	no	
global	minimum	is	guaranteed.		

•  That	is	to	say	the	coordinate	descent	on	J	is	not	
guaranteed	to	converge	to	the	global	minimum:		k-
means	can	be	suscep-ble	to	local	op-ma.		

•  But	very	oeen	k-means	will	work	fine	and	come	up	
with	very	good	clusterings	despite	this.		

•  Try	heuris-c	method	if	you	are	worried	about	gefng	
stuck	in	bad	local	minima:		

•  Run	k-means	many	-mes	(using	different	random	
ini-al	values	for	the	cluster	centroids	μj).		

•  Then,	out	of	all	the	different	clusterings	found,	select	
				the	one	that	gives	the	lowest	distor-on	J(c,	μ).	



Mul'variate	Gaussian	Mixture	Model	
Change	gears:	

Mimic	linear	combina-on	of	vectors,		
here	is	a	convex	combina-on.	



A	soU	clustering	methods.		Sign	more	responsibility		
to	one	of	the	Gaussians.		



How	Gaussian	mixture	model	and	
Expecta'on-Maximiza'on	(EM)	

related?	
Key:	

What is an EM algorithm?  
 
EM = Expectation-Maximization 



The	EM	(Expecta'on-Maximiza'on)	
Algorithm	

	•  Expecta-on	of	what?	
•  Maximiza-on	of	what?	

•  Work	out	details	with	students	on	the	board.	



EM	(Expecta'on-Maximiza'on)		
Algorithm	

•  Given	a	training	set	{x(1),	.	.	.	,	x(m)}	
•  Note:	since	we	are	in	the	unsupervised	learning	
sefng,	so	these	points	do	not	come	with	any	
labels.	

•  Goal:	Model	the	data	by	specifying	a	joint	
distribu-on		



Work	out	details	with	students	on	the	
board	

•  The	parameters	of	our	model	are	thus	φ,	μ	
and	∑	.	To	es-mate	them,	write:	



Jensen’s	inequality	



Geometry	of	EM	algorithm	



Density	es'ma'on	using	EM	Algorithm	



Anomaly	Detec'on	using	Density	
Es'ma'on	



Recall:	Maximum	Likelihood	Es'ma'on	(MLE)	
and	Maximum	a	Posterior	(MAP)	

In	both	cases,	the	data	D	is	given.	



Recall:	MLE	=Maximum	Likelihood	
Es-ma-on		

•  In	sta-s-cs,	maximum	likelihood	es-ma-on	
(MLE)	is	a	method	of	es-ma-ng	the	
parameters	of	a	sta-s-cal	model	given	
observa-ons,	by	finding	the	parameter	values	
that	maximize	the	likelihood	of	making	the	
observa-ons	given	the	parameters.	

	



Recall:	MLE	=	Maximum	Likelihood	
Es-mate	

		



Recall:	MAP	
•  Maximum	a	posteriori	(MAP)	es-ma-on	is	a	
model	of	posterior	distribu-on.			

•  The	MAP	can	be	used	to	obtain	a	point	
es-mate	of	an	unobserved	quan-ty	on	the	
basis	of	empirical	data.	




