Mathematics of Big Data, |
Lecture 7: Kernel PCA, One Class SVMs,

and Learning Theory

Weiqing Gu
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College
Summer 2017

@2017 by Weiging Gu. All rights reserved

Today’s topics

 Summary of Expectation-Maximization
Algorithm

 EM for MAP estimation (Review MAP
first)

* Kernel PCA
* One-Class Support Vector Machines
* Lagrange Duality (only if time permits)

Today’s topics

e Summary of Expectation-
Maximization Algorithm

Summary on
Expectation-Maximization (EM)
Algorithm

e Work out details with the students on the
board.

EM for MAP estimation

e Work out details with the students on the
board.

* First review MAP (Maximum A Posteriori)

Today’s topics

e Kernel PCA

Recall: PCA

Recall: we want to find two axis directions of the
elliptic curve. They are called principal axes.

How?

.' (“
>“')‘

N

ATy

Note: the x-value and y-value of the data
are correlated.

Their correlation are reflected by

the covariance matrix of the data.

Principal component analysis (PCA) is a
procedure to find an orthogonal
transformation to convert a set of
observations of possibly correlated variables
into a set of values of linearly uncorrelated.
Procedure of find the principal directions:
Step 1: Find the covariance matrix of the data
directly (Note: one can first standardize data:

* Find the mean y, of the x-value & the
mean p2 of the y-value.

* Subtract all x-value by p, and subtract all
y-value by p, Geometrically, move the x-
axis and y-axis to the data center.)

Step 2: Find eigenvalues and eigenvectors of
the covariance matrix of the data.

Step 3: Order the eigenvalues from largest to
smallest. The eigenvector corresponding to
the largest eigenvalue is called the 1°t
principal axis. So on and so forth.

Step 4: Form the rotation matrix using the
corresponding eigenvectors.

Recall: Dimension Reduction Use PCA

* Find the Principal axis and then project to a
lower dimensional space.

100+

oo
o
1

Body Length (mm)
o
o

Recall: Kernel

Example:

K = k(x,y) ke, y) = (27y + 1)’

=<®(x),8(y)> FYY

Did not calculate directly of ®(x), ®(y)

— 3(x)"®(y)

—||z—yl|>
Gaussian kernel: k(z,y) = e 272

(Often being used)

Recall: Example of Kernel Method

Linearly none separable data Linearly separable data, but in a higher

dimensional space.
ol O v
0.5 QO % g OOo o6 |
i éﬁ) g)cé) o : _
- 0.4 ' © :
e : o oﬁ » %O | A
ot OO j.: fﬁt (é) o Q)OO -
4#_,,& B O 0.2 o oo "B
O + O) @o%dg O
) o®© g 08 ¢ o .
-0.5 I, o ®g 04 &g k-
~ 0p g o 0.5 S T
: 0.6
- .
-1 0.5 0 0.5 1

(3717372)

(r; 5)

7181 + 7289 + 7383
22 + 2 bb 2b2
ai0] + 2a1a20102 + a505

2
(a: b> I A function of the original inner product in R

What is kernel PCA?

* Kernel PCA =kernel principal component analysis

= an extension of principal component analysis using
techniques of kernel methods.

Key: The kernel-formulation of PCA is restricted in

that it computes not the principal components
themselves, but the projections of our data onto
those components.

Example of Kernel PCA: Consider Kernel
k(z,y) = (2" y +1)°

Linearly none separable data Separable using the first component
0~
e -
7 10
J ++ * t + 4
+ + . *ﬁ **
+) * e #00
" | Apply ¢ °f .
+ * .:-o 2 g Tk +
R Kernel
O PCA
¢t aal ; -
40 !
1 1 1 1 1 1 1 | -50 -45 -40 -35 -30 -25 -20 15 10 5 0
-6 -4 -2 0 2 4 6 8 First component
X
Input points before kernel PCA Output after kernel PCA in the space of the

first and second components.

Example: Consider Gaussian Kernel
—||z—yl|2

k(x,y) =e 27

Linearly none separable data Separable using the first component
e-
08
61 — .
06 *
e * + ¥ 04}k
+ . .
2t S .
i . o Apply
T ‘; + ¢ .10 + g oF
: i
T FF : RAC Kernel %
r PCA ok
S) ; 06}
) r; " 2 0 3 s 6 8 %4 22 0 02 04 06 08 i
X First component
Input points before kernel PCA Output after kernel PCA in the space of the

first and second components.

Key idea of Kernel PCA

Cleverly avoid working directly in feature space

Key: the kernel-formulation of PCA is
restricted in that it computes not the
principal components themselves, but the
projections of our data onto those
components.

we never actually solve the eigenvectors and
eigenvalues of the covariance matrix in the high
dimensional feature space.

Work out details with students on the board.

Recall: Gram Matrix

iz, zfx,

T3 1 g =
T*T
_ x,{ -
where X = :
= xz 4 nxd

X, containing all the data, is the design matrix

xXxt

Kernel Matrix

Note: we first map our data via some function ¢,
then form the Gram Matrix.

What is Kernel Trick?

Cleverly avoid working directly in high dim’l feature space.

K = k(x’ y) Kernel methods owe their name to the
use of kernel functions, which enable
them to operate in a high-dimensional,

= <¢(x)’ @(y)) implicit feature space without ever
B @()T@() computing the coordmate.f, of the data in
= ¥N\X Y) thatspace, but rather by simply
computing the inner products between
T 9 the images of all pairs of data in the
k(z,y) = (" y+1) feature space.
* This operation is often computationally
= (<, r,y>+ 1)2 cheaper than the explicit computation of
A the coordinates. This approach is called
Did not calculate directly of &(x), &(y) the "kernel trick". Kernel functions have
But use the kernel function k(x, y) been introduced for sequence data,
toonly calculate <& (x), 2(y)> graphs, text, images, as well as vectors

Key: We do not need to write down exactly what is @, but the result of <®(x), ®(y)>

Example:

It suffices for us to know such a & exit.
We check it by using Mercer’s Theorem

A symmetric function K(z,y) can be expressed as an inner product

K(LE, y) - <¢(x)a ¢(y)>

for some ¢ if and only if K(x,y) is positive semidefinite, i.e.

/ K(z,9)9()g(y)dady >0 Vg

or, equivalently:

K(zo,z1) is psd for any collection {z; ...z,}

Applications of Kernel Methods

* We can turn a linear model into a non-linear model by
applying the kernel trick to the model: replacing its
features (predictors) by a kernel function.

* The following algorithms are capable of operating with
the kernel method:

e Support vector machines (SVM)

e Gaussian processes

e Principal components analysis (PCA)
e Canonical correlation analysis

* Ridge regression

* Spectral clustering

* Linear adaptive filters

* The kernel perceptron

 And many others.

Today’s topics

* One-Class Support Vector Machines

What is One-class Support Vector
Machines?

* Recall: The goal of the machine learning
application is to distinguish test data between

a number of classes, using training data.

* But what if you only have data of one class
and the goal is to test new data and found out
whether it is alike or not like the training
data?

* A method for this task is the One-Class
Support Vector Machine.

Today’s topics

* Lagrange Duality (only if time
permits)

Lagrange Duality

(Please read the rest of the slides)

Consider a general problem:

min,, f(w)
s.t. hi(w)=0, i=1,...,L

Define the Lagrangian:

L(w,B) = f(w)+) Bihi(w)

1=1

Here, the 6i’s are called the Lagrange multipliers.

Key steps involved

* Find the partial derivatives and set them to

Zero.
oL oL

ow; =0 0B; B

0,

e Solve for w and [.

* Q: How to deal with constrained optimization
problems in which there are inequality as well
as equality constraint?

Consider

min,, f(w)
s.t. gi(w) <0, i=1,...,k
hi(w)=0, i=1,...,1

This optimization problem is called
the primal optimization problem.

Generalized Lagrangian

[
L(w,a,) = Zazgz)+ Y Bihi(w)
=)

Here, the «;’s and (3;’s are the Lagrange multipliers.

Similar as before.

Key: How to get rid of the inequalities?

Consider:

Op(w) = ag.l?;}éoﬁ(w’a’ﬁ)'
\ B:ay>

Primal optimization

Op(w) = a,g}ggczoﬁ(w, a,).
Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either g;(w) > 0 or h;(w) # 0
for some ¢), then you should be able to verify that

bp(w) = max f(w)+) oigi(w)+) Bihi(w) (1)
= 00. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then Op(w) = f(w). Hence,

bp(w) = {

f(w) if w satisfies primal constraints
o0 otherwise.

We essentially be able to get rid of the
inequalities.

Thus, Op takes the same value as the objective in our problem for all val-
ues of w that satisfies the primal constraints, and is positive infinity if the
constraints are violated. Hence, if we consider the minimization problem

minfp(w) = min max L(w,a,f),
w w o af:a;>0

we see that it is the same problem (i.e., and has the same solutions as) our
original, primal problem. For later use, we also define the optimal value of
the objective to be p* = min,, fp(w); we call this the value of the primal
problem.

The Dual Optimization Problem

Now, let’s look at a slightly different problem. We define
Op(a, B) = min L(w, &, B).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of fp we were optimizing (maximizing) with respect to a, 3, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:

a,g:lgf-(zo Op(a, B) = a,}'ﬁf}f{go mulJn L(w,a,pB).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d* = maxy s.q.>0 0p(w).

Relations between Max-Min and
Min-Max Problems

How are the primal and the dual problems related? It can easily be shown
that

d"= max minL(w,e,f) <min max L(w,a,fB)=7p"
o,f:0;20 w (! ”B)_ w a,f:0;20 (’ "B) p

(You should convince yourself of this; this follows from the “max min” of a

function always being less than or equal to the “min max.”) However, under

certain conditions, we will have The proof is out of scope of

" % This course.
d=p,

so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.

Q: When do the primal and dual
problems have same solution?

Suppose f and the g;'s are convex,® and the h;’s are affine.* Suppose
further that the constraints g; are (strictly) feasible; this means that there
exists some w so that g;(w) < 0 for all .

Under our above assumptions, there must exist w*, a*, B* so that w* is the
solution to the primal problem, o*, B* are the solution to the dual problem,
and moreover p* = d* = L(w*, o, f*). Moreover, w*, o* and * satisfy the
Karush-Kuhn-Tucker (KKT) conditions

SWhen f has a Hessian, then it is convex if and only if the Hessian is positive semi-
definite. For instance, f(w) = w!w is convex; similarly, all linear (and affine) functions
are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

“L.e., there exists a;, b;, so that h;(w) = alw + b;. “Affine” means the same thing as

linear, except that we also allow the extra intercept term b;.

KKT Conditions

Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

a x % % _ .
8wi£(w,a,ﬁ) =0, 1=1,...,n (3)
8 X % Nk _ .
8—@5(10,05,[3) 0, i=1,...,1 (4)
a;gi(w*) = 0, i=1,...,k (5)
gi(w*) S y U= 17 9 k (6)
of >0, i=1,...,k (7)

Moreover, if some w*, o, f* satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.

KKT dual complementarity condition
¥ ¥ '
o;gi(w) = 0, i=1,...,k (5)

We draw attention to Equation (5), which is called the KKT dual com-
plementarity condition. Specifically, it implies that if o > 0, then g;(w*) =
0. (Le., the “g;(w) < 0” constraint is active, meaning it holds with equality
rather than with inequality.) Later on, this will be key for showing that the
SVM has only a small number of “support vectors”; the KKT dual comple-

mentarity condition will also give us our convergence test when we talk about
the SMO algorithm.

Optimal margin classifiers--SVM

A

1 2
2|l

st yD(wle® +0)>1, i=1,...,m

MLy 4,b

We can write the constraints as
gi(w) = —yD(wTz® +b) +1<0.

We have one such constraint for each training example. Note that from the
KKT dual complementarity condition, we will have a; > 0 only for the train-
ing examples that have functional margin exactly equal to one (i.e., the ones
corresponding to constraints that hold with equality, g;(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

Back to SVM

1 &))
L(w,b,0) = o] = > e [y @z +b) 1]

1=1

Note that there’re only “a;” but no “B;” Lagrange multipliers, since the

problem has only inequality constraints.
Let’s find the dual form of the problem. To do so, we need to first
minimize L£(w,b,a) with respect to w and b (for fixed a), to get Op, which

we’ll do by setting the derivatives of £ with respect to w and b to zero. We
have:

Vul(w,b,a) =w — Z aiy(i)x(i) =0

1=1

This implies that
W= Z a1z, (9)
i=1

As for the derivative with respect to b, we obtain
a m
—£ (w, b,) Z = (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w,b, a) i — % i Doy (z9) gl — bilaz-y(i).

But from Equation (10), the last term must be zero, so we obtain

L(w,b,a) = Z '__ZU Dy ()T,

t,7=1

Dual Optimization Problem-SVM

Recall that we got to the equation above by minimizing £ with respect to w
and b. Putting this together with the constraints o; > 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

max, W(o) ZO‘ _ f:y(i)y(j)aiaj(x(i),x(j))
i ',j=1 T

Key: All the x-data is in this
inner product!

st a; >0, z=1,...,

Zm:az'y(i) =
i=1

From this dual point view, we will see
SVM can be generated by replacing
the inner product by a Kernel!

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

Exercise

You should also be able to verify that the conditions required for p* =
d* and the KKT conditions (Equations 3-7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the o;’s. We’ll talk later

about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the a’s that maximize W («)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the a’s. Having found w*, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

maxi:y(i)z_l w*Tl'(z) + mini:y(z‘)zl w*TfE(i)

b = 5

(11)

Cool thing about this dual method

Before moving on, let’s also take a more careful look at Equation (9),
which gives the optimal value of w in terms of (the optimal value of) «.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input z. We would then calculate w’z + b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

. T
wiz +b = (Z az-y(i)a:(i)) z+b (12)
i=1

m
= Z oy (z® x) +b. (13)
i=1
Hence, if we've found the ¢;’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the «;’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

* Back up slides

Kernel Trick

Cleverly avoid working directly in feature space

* Kernel methods owe their name to the
use of kernel functions, which enable
them to operate in a high-dimensional,

K = k(x’ Y) implicit feature space without ever
computing the coordinates of the data
= <(I)(x)a ¢(Y)> in that space, but rather by simply
" computing the inner products between
— @(x) (I)(Y) the images of all pairs of data in the
feature space.
T 2' is operation is often computationally
k(w, y) — (33 Y + 1) eaper than the explicit computation
the coordinates. This approach is
_ | 5 lled the "kernel trick". Kernel
- (<» ?3 ’ y >+ 1) nctions have been introduced for

VJ quence data, graphs, text, images, as

N | P T

correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two

rvs X and Y is defined as
corr [X,Y] &

cov [X,Y]

If Xand Y are \/V&I‘ [X] var [Y]

indep., then cov [X,Y] =0; say X and Y are uncorrelated.

e A correlation matrix of a random vector has the form:

/COI‘I‘ [Xl,Xl] COIrr [Xl, Xg]
R: . .

\corr [Xg, X;] corr [Xg, Xo]

corr [X1, Xd]\

COIT [Xd, Xd]/

Exercise: show that —1 € corr [X, ¥] € 1 and
Show that corr[X,Y] = 1 Yf ¥ = aX +b for some parameters a and b.

