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Today’s Topics

Recap of Bayesian Reasoning

Bayesian Linear Regression (which we've
already seen)

Bayesian Logistic Regression (Review)
Bayesian Inference

Intractable Integrals and Motivation for
Approximate Methods (only if time permits)

Learning Theory



Today’s Topics

 Recap of Bayesian Reasoning.



Let’s Recap on
Bayesian Reasoning/Bayesian Inference

* Key: Put distributions on everything and then
use rules of probability!

* Recall again: Bayes’ Theorem

Likelihood

How probable is the evidence
given that our hypothesis is true?

P(e | H) P(H)

) ) =
P(H | e) P}

Posterior Marginal

How probable is our hypothesis How probable is the new evids

given the observed evidence!’

(Not directly computable)



Visualize Bayes’ Theorem

Whole space P(A) = 0 P(B) = @
0

P(A|B) = ? P(B|A) = T

P(AnB)= -
P(A) x P(BJA) = . X ‘ = .— = P(AnB)
Bl 0 L
P(B) x P(A|B) = ; X .. = .i = P(AnB)

= P(B|A) =P(A|B) x P(B)/ P(A)



Recall: Maximum Likelihood Estimation (IMLE)
and Maximum a Posterior{MAP)

In both cases, the data D is given.

This is the prior: i.e. what you p€fieved before

<
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. (Y
you saw the evidence. §

This Is the posterior

This is the normalizing constant:
L.e. The likelihood of that evidence under
any circumstances.



Work out details with the students on
the board

 Maximum Likelihood Estimation (IVILE)

* Key: Find a good values of H such that P(D|H)
IS maximized.

That is: Estimate the true H (hypothesis/model
parameters) that the data D came from.



Recall: Linear Regression

Given some data: D ={x,y]}

20,. I ! 1 1 1
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Which H(ypothesis) minimize the error?




Assume a linear model

Y1 o | BEECE TR P )

r n )’n X n! ... xnm Wi

e T=(y-XwW)
This is equivalent to

y; = D_wax; + N(0,0%) = x;w + N(0,0%)

J



Geometrically you can see the solution!

P

r=y-Xw

¥ Xw




Work out details with the students on
the board

 Maximum a Posterior (MAP)



Compare MLE with MAP

 Details on board.



Naive Bayes ()
X) -

Class Prior Probability

Likelihood )
P(x|c)P(c
P(c|x)= P ()) )
X
| \
Posterior Probability Predictor Prior Probability

P(c|X)oo P(x,|c)x P(x, |c)>f---><P(xn | ¢)x P(c)

To maximize this product, we take log of it



Today’s Topics

 Bayesian Linear Regression (which we've
already seen).



Bayesian Linear Regression

Why not use MEL?

Since it is often over-fitting.

How can we address this?

Why not use MAP? We put a prior

But we do not have representation of our
uncertainty.



Let’s see an example  Given some data:
D= {xi'yi}

What if you have to make a prediction for an investment of big ameunt money or a cancer?

Why Bayesian? Optimize certain loss/cost function.

v Gives us P(y|x) <= This is really we want.
4

//_

Need to measure how uncertain you are!
This is where the Bayesian methlods coming in.

X
o—>




Work out details with the students



Be careful with the notations!
Sometimes we use A for the design
matrix and x as parameter vector!

° Where y = (y]_l y2/ sy yn)T
* Where A is the design matrix.




Important fact for
Bayesian Linear Regression

Keys:

f we put Gaussian distributions for both
ikelihood and for the prior, the the posterior
will be another Gaussian distribution!

Its predictive distribution is again Gaussian!
Both are closed solutions!



Today’s Topics

 Bayesian Logistic Regression (Review).



Bayesian Logistic Regression

We will see that

There is no analytic closed formula solutions
(the integration involved is not integratable,
usual approximation method using grids is
exponential (#p, something as NP-hard).

We call such an integration is intractable.

We will have to smart approximation method
called Monte Carol approximation.



Bayesian Logistic Regression

e Work out details with students on the board.



Today’s Topics

 Bayesian Inference.



Bayesian Inference

e Work out detail with students on the board.



Today’s Topics

* Intractable Integrals and Motivation for
Approximate Methods (only if time
permits).



Monte Carlo Approximation

Area of Unit Disk?




Close your eyes and throw a ball to it, what is
the chance to get into the green area?



Grid Approximation




Today’s Topics

* Learning Theory (if time permits,
otherwise, read only).



Learning Theory

— Bias/Variance Trade-off
— Union and Chernoff/Hoeffding Bounds

This topic will be closely following Prof. Ng’s
notes on Learning Theory.



Bias/variance tradeoff

;y:90+91$ y=0o+0;x+0 % y:90‘|‘91$+...95l’5

Large bias

R | /\ [ ﬂLarge variance |
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Did not result in a good model!
This is a good Specifically, even though the 5th order

This linear model is too

simple. it suffers from large One! polynomial did a very good job

bif’s' and may underfit,(i.e., predicting y (say, prices of houses) from
fail to capture structure X (say, living area) for the examples in
exhibited by) the data. the training set, we do not expect the

odel shown to be a good one for
ﬁ‘redicﬁng the prices of houses not in
the training set.

Does not generalize well 2 Generalization error



Definition of Generalization Error

 Whatever errors you captured in your model,
either fail to capture or “over” capture from
your small set of training data, that do not
reflect the wider pattern of the relationship
between x and y on your testing data are
called generation errors.

e Generalization Error consists
— Bias
— Variance



Variance and Bias

For example, when fitting a 5th order polynomial as in the
rightmost figure, there is a large risk that we’re fitting
patterns in the data that happened to be present in our
small, finite training set, but that do not reflect the wider
pattern of the relationship between x and .

This could be, say, because in the training set we just
happened by chance to get a slightly more-expensive-than-
average house here, and a slightly less-expensive-than-
average house there, and so on.

By fitting these “spurious” patterns in the training set, we
might again obtain a model with large generalization error.
In this case, we say the model has large variance.

We define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say,
infinitely) large training set.



There is a tradeoff between bias & variance.

 Meaning: If our model is too “simple” and has
very few parameters, then it may have large
bias (but small variance).

e Butifitistoo “complex” and has very many
parameters, then it may suffer from large
variance (but have smaller bias).

* |[n the example above, fitting a quadratic
function does better than either of the
extremes of a first or a fifth order polynomial.



The Union Bound

Let Ay, Ag, ..., A be k different events (that
may not be independent). Then

P(AiU---UA) < P(A) + ...+ P(Ay).

'

P(A U B) <= P(A) + P(B)




Hoeffding Inequality / Chernoff Bound
Let Z1,...,Z,, be m independent and iden-
tically distributed (iid) random variables

drawn from a Bernoulli(¢) distri bution.

le.,, P(Z;=1)= ¢, and P(Z; =0) =1 — ¢.

Let ¢ = (1/m) S0, Z
be the mean of these random variables,

and let any v > 0 be fixed. Then
P(|p — ¢| > ) < 2exp(—27*m)



Meaning of Hoeffding inequality (also
called Chernoff bound)

The Chernoff bound says that if we take ¢~ —the
average of m Bernoulli(¢) random variables—to be
our estimate of ¢, then the probability of our being
far from the true value is small, so long as m is large.

Another way of saying this is that if you have a
biased coin whose chance of landing on heads is ¢,
then if you toss it m times and calculate the fraction
of times that it came up heads, that will be a good
estimate of ¢ with high probability (if m is large).



* Using the Union Bound and Chernoff Bound, we will
be able to prove some of the deepest and most
important results in learning theory.

* To simplify our exposition, let’s restrict our
attention to binary classification in which the labels
arey € {0, 1}.

* Everything we’ll say here generalizes to other,
including regression and multi-class classification,
problems.



We assume we are given|a training set S = {(z\¥,y"V);t = 1,...,m}
of size m, where the training examples (a:(i),y(i)) are drawn 11d from some
probability distribution D. For a hypothesis h, we define the training error

(also called the empirical risk or|empirical error|in learning theory) to
be

&h) = — 3 1{h(z®) £ 40},

m <
1=1

This is just the fraction of training examples that h misclassifies. When we
want to make explicit the dependence of £(h) on the training set S, we may
also write this a £g(h). We also define the generalization error|to be

e(h) = Pay)~p(h(z) # y).

[.e. this is the probability that, if we now draw p new example (z,y)|from
the distribution D, h will misclassify it.

Note that we have assumed that the training data was drawn from the
same distribution D with which we’re going to evaluate our hypotheses (in
the definition of generalization error). This is sometimes also referred to as
one of the PAC assumptions.? PAC = Probably Approximately Correct



Important Results of Learning Theorem

* |n certain sense, training error will be close to
generalization error with high probability,
assuming m is large.

Theorem. Let |H| = k, and let any m,d be fixed. Then with probability at
least 1 — 4, we have that

: 1 2k
) < ine(h 24/ — log —.
e(h) < (1’2171} ( )) " om °§

-

Corollary. Let |H| = k, and let any 6,7 be fixed. Then for £(h) <
mingey £(h) + 27 to hold with probability at least 1 — 4, it suffices that

m




Consider the setting of linear classification| and let |hg(z) = 1{6" z > 0}).
What’s a reasonable way of fitting the parameters 7 One approach is to try
to minimize the training error, and pick

0 = arg rrbin E(hg).
%ow to auto select model?

We call this process pmpirical risk minimization (ERM)| and the resulting
hypothesis output by the learning algorithm is h = hy. We think of ERM
as the most “basic” learning algorithm, and it will be this algorithm that we
focus on in these notes. (Algorithms such as|logistic regression|can also be
viewed as approximations to empirical risk minimization.)




We define the hypothesis class H
H = {hg : ]’I,g(CE) — I{HTCE > O},H C Rn+1}

Empirical risk minimization can now be thought of as a minimization over
the class of functions H, in which the learning algorithm picks the hypothesis:

h = arg min (R
arg%r{la( )

In this course, we assume ¥ is finite.



Let’s start by considering a learning problem in which we have a finite hy-
pothesis class H = {h1, ..., hi} consisting of k hypotheses. Thus, H is just a
set of k£ functions mapping from X to {0, 1}, and empirical risk minimization
selects h to be whichever of these k functions has the smallest training error.

We would like to give guarantees on the generalization error of A.| Our
strategy for doing so will be in two parts: First, we will show that[é(h) is a
reliable estimate of £(h) for all h.| Second, we will show that [this implies an
upper-bound on the generalization error of h. '

Thus, £(h;) is exactly the mean of the m random variables Z; that are drawn
iid from a Bernoulli distribution with mean e(h;). Hence, we can apply the
Hoeffding inequality, and obtain

P(le(hi) — é(hi)| > 7) < 2exp(—27°m).




This shows that, for our particular h;, training error will be close to
generalization error with high probability, assuming m is large. But we
don’t just want to guarantee that e(h;) will be close to £(h;) (with high

_probability) for just only one particular h;. We want to prove that this will

be true for simultaneously for all h € H.| To do so, let A; denote the event

“that [e(h;) — é(h;)| > 7. We've already show that, for any particular A;, it
holds true that P(A;) < 2exp(—2v?m). Thus, using the union bound, we
have that

< iP(Ai)

k
< ) 2exp(—27°m)

=1

= 2kexp(—27*m)



If we subtract both sides from 1, we find that

P(—E!h S H|€(hz) - é(hi)l > ’)’)

P(Yh € H.|le(h;) — E(hy)| <)
> 1 — 2kexp(—2y°m)

gl!:he “—~” symbol means “not.’l) SoJ with probability at least 1—2k exp(—2v*m),

~ we have that (h) will be within v of £(h) for all A € H.|This is called a uni-
form convergence result, because this is a bound that holds simultaneously
for all (as opposed to just one) h € H.

In the discussion above, what we did was, for particular values of m and
v, give a bound on the probability that for some h € H, |e(h) — &(h)| > 7.
There are three quantities of interest here: m, v, and the probability of error;
we can bound either one in terms of the other two




For instance, we can ask the following question: Given v and some ¢ > 0,
how large must m be before we can guarantee that with probability at least
1 — ¢, training error will be within v of generalization error? By setting
§ = 2k exp(—27?m) and solving for m, [you should convince yourself this is
the right thing to do!|, we find that if

1 2k
m > 2—72 lOg 77
then with probability at least 1 — J, we have that |e(h) — é(h)| < ~ for all
h € H. (Equivalently, this shows that the probability that |e(h) — £(h)| > ~
for some h € H is at most §.) This bound tells us how many training
examples we need in order make a guarantee. The training set size m that
a certain method or algorithm requires in order to achieve a certain level of
performance is also called the algorithm’s sample complexity.




The key property of the bound above is that the number of training
examples needed to make this guarantee is only logarithmic in k, the number
of hypotheses in ‘H. This will be important later.

Similarly, we can also hold m and ¢ fixed and solve for v in the previous
equation, and show [again, convince yourself that this is right!| that with
probability 1 — d, we have that for all h € H,

£(h) \/— log —

Now, let’s assume that uniform convergence holds, i.e., that |e(h)—£(h)| <
v for all h € H. What can we prove about the generalization of our learning
algorithm that picked h = argmingey €(h)?




Take any one, fixed, h; € H. Consider a Bernoulli random variable Z
whose distribution is defined as follows. We’re going to sample (z,y) ~ D.
Then, we set Z = 1{h;(z) # y}. Le., we're going to draw one example,
and let Z indicate whether h; misclassifies it. Similarly, we also define Z; =

1{h;(z9)) # yW}. Since our training set was drawn iid from D, Z and the
Z;’s have the same distribution.

We see that the misclassification probability on a randomly drawn example—

that is, e(h)—is exactly the expected value of Z (and Z;). Moreover, the
training error can be written




Define h* = arg minycy €(h) to be the best possible hypothesis in 7. Note
that h* is the best that we could possibly do given that we are using H, so
it makes sense to compare our performance to that of h*. We have:

e(h) < é(h)+
(h*)

(h)+2’y

IA TN IA

The first line used the fact that |e(h)—£&(h)| < v (by our uniform convergence
assumption). The second used the fact that A was chosen to minimize &(h),
and hence é(h) < é(h) for all h, and in particular é(h) < é(h*). The third
line used the uniform convergence assumption again, to show that £(h*) <
e(h*) +v. So, what we’ve shown is the following: If uniform convergence
occurs, then the generalization error of A is at most 2y worse than the best
possible hypothesis in H!



Let’s put all this together into a theorem.

Theorem. Let |H| =k, and let any m, d be fixed. Then with probability at
least 1 — 0, we have that

A Zk
e(h) < (glrélqzla ) —I—Q\/— log —

This is proved by letting v equal the /- term, using our previous argu-
ment that uniform convergence occurs with probability at least 1 — ¢, and
then noting that uniform convergence implies £(h) is at most 2 higher than
e(h*) = mingey €(h) (as we showed previously).




This also quantifies what we were saying previously saying about the
bias/variance tradeoff in model selection. Specifically, suppose we have some
hypothesis class H, and are considering switching to some much larger hy-
pothesis class H' O H. If we switch to H’, then the first term minye(h)

can only decrease (since we’d then be taking a min over a larger set of func-
tions). Hence, by learning using a larger hypothesis class, our “bias” can
only decrease. However, if k increases, then the second 24/- term would also
increase. This increase corresponds to our “variance” increasing when we use
a larger hypothesis class.




Corollary. Let |H| = k, and let any 6, be fixed. Then for e(h) <
mingey €(h) + 27y to hold with probability at least 1 — 6, it suffices that

1 2k
m > W]og;

1 k
- 0(545),




