Mathematics of Big Data, I

Lecture 9: Recommender Systems, Collaborative Filtering, and Topic Modeling based on Non-Negative Matrix

Factorization.
Weiqing Gu
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College
Summer 2017
@2017 by Weiqing Gu. All rights reserved

Topics Today

- Introduction to Recommender Systems.
- Collaborative Filtering.
- Non-Negative Matrix Factorization.
- Using Non-Negative Matrix Factorization for Topic Modeling.

Topics Today

- Introduction to Recommender Systems.
- Collaborative Filtering.
- $\mathbb{N} 0$ n= Negative $\mathbb{M a t r i x ~ F a c t o r i t a t i o n . ~}$
- Using $\mathbb{N O}$ - $\mathbb{N e g a t i v e ~} \mathbb{M}$ atrix Factorization for Topic Modeling.

Why Recommender Systems?

- Recommender Systems have Important Machine Learning Applications.
- When I on the clinic recruiting trips, I often notice that many companies try to build better recommender systems, such as Apple, Amazon, Netflix, Yelp, and eBay.
- E.g.s: Amazon/Netflix will recommend books/movies on their webpage for you to buy/watch based on what you had purchased/watched.
- Good recommendation systems will provide substantial revenues for the companies who use them.
- Big ideas of Machine learning: auto learn important data features instead of hard hand coding. Recommender systems is one of them, it can do auto learning!

Recommendation System Problem Formulation

Example: Predicting movie ratings

User rates movies using one to five stars

	Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
\%	Love at last				
©	Romance forever				
m	Cute puppies of love				
\%	Nonstop car chases				
¢	Swords vs. karate				

Recommendation System Problem Formulation

Example: Predicting movie ratings

User rates movies using gne to five stars

Goal: Given the data $r(i, j)$ and $y^{(i, j)}$, fill out the question marks.

- Do it automatically!

Content Based Recommendations

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_{1} (romance)	x_{2} (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	$?$	$?$	0	1.0	0.01
Cute puppies of love	$?$	4	0	$?$	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	$?$	0	0.9

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^{3}$. Predict user j as rating movie i with $\left(\theta^{(j)}\right)^{T} x^{(i)}$ stars.

The goal of the Recommender system is to solve the following problem:

- Given the $r(i, j)$ and $y^{(i, j)}$. How to predict the values for the question marks?

$$
n_{u}=4, n_{m}=5
$$

Content-based recommender systems

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	$?$	$?$	0
Cute puppies of love	$?$	4	0	$?$
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	$?$

Use machine learning to build content based recommender system

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^{3}$. Predict user j as rating movie i with $\left(\theta^{(j)}\right)^{T} x^{(i)}$ stars.

Content-based recommender systems

Now each movie will have a feature vector. $x(1)=[1,0.9,0]^{\top}$. Similarly for other $x(i)$.
Let $\mathrm{n}=$ number of features, not include x_{0}.
Here $\mathrm{n}=2$.

\Rightarrow For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^{3}$. Predict user j as rating movie i with $\underline{\left.\theta^{(j)}\right)^{T} x^{(i)}}$ stars. $\overline{L \theta^{(j)}} \in \mathbb{R}^{h+1}$

$$
x^{(3)}=\left[\begin{array}{c}
1 \\
\frac{0.99}{0}
\end{array}\right] \leftrightarrow \theta^{(1)}=\left[\begin{array}{c}
0 \\
\frac{5}{0}
\end{array}\right]\left(\theta^{(1)}\right)^{\top} x^{(3)}=5 \times 099
$$

Basically it is a linear regression problem

for learning $\theta^{(j)}$

$r(i, j)=1$ if user j has rated movie i (0 otherwise) $y^{(i, j)}=$ rating by user j on movie i (if defined)
$\theta^{(j)}=$ parameter vector for user j
$x^{(i)}=$ feature vector for movie i
For user j, movie i, predicted rating: $\left(\theta^{(j)}\right)^{T}\left(x^{(i)}\right)$
$m^{(j)}=$ no. of movies rated by user j
To learn $\theta^{(j)}$:

Optimization objective

To learn $\theta^{(j)}$ (parameter for user j):

$$
\min _{\theta(j)} \frac{1}{2} \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2}
$$

To learn $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{\left(n_{u}\right)}$:

$$
\begin{aligned}
\min _{\theta^{(1)}, \ldots, \theta^{(n u)}} & \frac{1}{2} \sum_{j=1}^{n_{u}} \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n_{u}} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2} \\
n_{u} & =\text { no. users }
\end{aligned}
$$

Algorithm for Recommender System

Optimization algorithm:

$$
\min _{\theta^{(1)}, \ldots, \theta^{(n+u)}} \frac{1}{2} \sum_{j=1}^{n_{u}} \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n_{u}} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2}
$$

Gradient descent update:

$$
\begin{aligned}
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\alpha \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)}(\text { for } k=0) \\
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\alpha\left(\sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)}+\lambda \theta_{k}^{(j)}\right)(\text { for } k \neq 0)
\end{aligned}
$$

Algorithm for Recommender System

Optimization algorithm:

$$
\min _{\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}} \underbrace{\frac{1}{2} \sum_{j=1}^{n_{u}} \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n_{u}} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2}}_{J\left(\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}\right)}
$$

Gradient descent update:

$$
\begin{aligned}
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\stackrel{\downarrow}{\sum_{i: r(i, j)=1}}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)} \underline{(\text { for } k=0)} \\
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\alpha \underbrace{\left(\sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)}+\lambda \theta_{k}^{(j)}\right)}_{\frac{\partial}{\partial \theta^{(j)}} J\left(\theta^{(i)}, \ldots, \theta^{\left(n_{u}\right)}\right) .} \text { (for } k \neq 0)
\end{aligned}
$$

Topics Today

- lntroduction to Recommender Systems.
- Collaborative Filtering.
- Non=Ne旬ative Matrix Factoritation.
- Using $\mathbb{N o n =}$ Negative \mathbb{M} atrix Factorization for Topic Modeling.

Collaborative Filtering Problem motivation:

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_{1} (romance)	x_{2} (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	$?$	$?$	0	1.0	0.01
Cute puppies of love	$?$	4	0	$?$	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	$?$	0	0.9

Problem motivation $\quad x_{0}=1$

What if the values of x_{1} and x_{2} are missing?

Movie	Alice (1) $\theta^{(1)}$	Bob (2) $\theta^{(i)}$	Carol (3) $\theta^{(3)}$	$\begin{gathered} \text { Dave (4) } \\ \theta^{(4)} \end{gathered}$	$\begin{gathered} x_{1} \\ \text { (romance) } \end{gathered}$	$\begin{gathered} x_{2} \\ \text { (action) } \end{gathered}$
Love at last	5	5	0	0	?	?
Romance forever	5	?	?	0	?	?
Cute puppies of love	?	4	0	?	?	?
Nonstop car chases	0	0	5	4	?	?
Swords vs. karate	0	0	5	?	?	?
$\theta^{(1)}=$	$\theta^{(2)}$	$\left[\begin{array}{l}0 \\ 5 \\ 0\end{array}\right.$,$\theta^{(3)}$	$\left[\begin{array}{l}0 \\ 0 \\ 5\end{array}\right]$	$\theta^{(4)}=$	$\left[\begin{array}{l}0 \\ 0 \\ 5\end{array}\right]$

Mathematically, it is the dual problem of our previous content based recommendation.

Optimization Algorithm for the dual problem

Given $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$, to learn $x^{(i)}$:

$$
\min _{x^{(i)}} \frac{1}{2} \sum_{j: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{k=1}^{n}\left(x_{k}^{(i)}\right)^{2}
$$

Given $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$, to learn $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$:

$$
\min _{x^{(1)}, \ldots, x^{(n m)}} \frac{1}{2} \sum_{i=1}^{n_{m}} \sum_{j: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{i=1}^{n_{m}} \sum_{k=1}^{n}\left(x_{k}^{(i)}\right)^{2}
$$

$n_{m}=$ no. movies

Collaborative Filtering

Given $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$ (and movie ratings),

 can estimate $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$Given $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$, can estimate $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$

Guessing

Collaborative Filtering Optimization Objective

Given $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$, estimate $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$:

$$
\min _{\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}} \frac{1}{2} \sum_{j=1}^{n_{u}} \sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n_{u}} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2}
$$

Given $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$, estimate $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$:

$$
\min _{x^{(1)}, \ldots, x^{\left(n_{m}\right)}} \frac{1}{2} \sum_{i=1}^{n_{m}} \sum_{j: r i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{i=1}^{n_{m}} \sum_{k=1}^{n}\left(x_{k}^{(i)}\right)^{2}
$$

Minimizing $x^{(1)}, \ldots, x^{\left(n_{m}\right)}$ and $\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$ simultaneously:

$$
\begin{gathered}
J\left(x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}\right)=\frac{1}{2} \sum_{(i, j) \cdot r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right)^{2}+\frac{\lambda}{2} \sum_{i=1}^{n_{m}} \sum_{k=1}^{n}\left(x_{k}^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{n_{u}} \sum_{k=1}^{n}\left(\theta_{k}^{(j)}\right)^{2} \\
\min _{x^{(1)}, \ldots, x^{(n, m)}} J\left(x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}\right) \\
\theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}
\end{gathered}
$$

Collaborative Filtering Algorithm

 1. Initialize $x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$ to small random values.2. Minimize $J\left(x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}\right)$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1, \ldots, n_{u}, i=1, \ldots, n_{m}$:

$$
\begin{aligned}
& x_{k}^{(i)}:=x_{k}^{(i)}-\alpha\left(\sum_{j: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)} \theta_{k}^{(j)}+\lambda x_{k}^{(i)}\right)\right. \\
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\alpha\left(\sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)}+\lambda \theta_{k}^{(j)}\right)
\end{aligned}
$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^{T} x$

Collaborative filtering algorithm

$\rightarrow 1$. Initialize $x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}$ to small random values.
\rightarrow 2. Minimize $J\left(x^{(1)}, \ldots, x^{\left(n_{m}\right)}, \theta^{(1)}, \ldots, \theta^{\left(n_{u}\right)}\right)$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1, \ldots, n_{u}, i=1, \ldots, n_{m}$:

$$
\begin{aligned}
& x_{k}^{(i)}:=x_{k}^{(i)}-\alpha\left(\sum_{\underline{j} \cdot r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) \theta_{k}^{(j)}+\lambda x_{k}^{(i)}\right) \leftarrow \\
& \theta_{k}^{(j)}:=\theta_{k}^{(j)}-\alpha\left(\sum_{i: r(i, j)=1}\left(\left(\theta^{(j)}\right)^{T} x^{(i)}-y^{(i, j)}\right) x_{k}^{(i)}+\lambda \theta_{k}^{(j)}\right) \leftarrow \\
& \frac{\partial}{\partial x_{k}^{(i)}} J(\cdots \cdot)
\end{aligned}
$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x}, predict a star rating of $\underline{\theta^{T} x}$.

$$
\left(\theta^{(j)}\right)^{\top}\left(x^{(i)}\right)
$$

Topics Today

- Introduction to Recommender Systemns.
- Collaborative Filtering.
- Non-Negative Matrix Factorization.
- Using Non-Negative Matrix Factorization for Topic Modeling.

Topic Modeling based on Non-negative Matrix Factorization

Intro: Topic Modeling

What is the Goal of Topic Modeling?

- Goal: Discover hidden thematic structure in a corpus of text (e.g. tweets, Facebook posts, news articles, political speeches).
- Unsupervised approach, no prior annotation required.

- Output of topic modeling is a set of k topics. Each topic has: 1. A descriptor, based on highest-ranked terms for the topic.

2. Membership weights for all documents relative to the topic.

What is the TF-IDF normalization?

tf-idf = term frequency-inverse document frequency

- TF-IDF is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.
- Mathematically, TF-IDF is the product of two statistics, term frequency and inverse document frequency.

Different ways to define Term Frequency $f_{t, d}$

- Raw frequency of a term in a document: the number of times that term t occurs in document d, denoted by $f_{\text {t.d }}$
- Boolean "frequencies" defined as "= 1 if t occurs in d and 0 otherwise".
- logarithmically scaled frequency: 1 $+\log f_{\text {t.d }}$, or zero if $f_{t . d}$ is zero.

Variants of TF weight

weighting scheme	TF weight
binary	0,1
raw frequency	$f_{t, d}$
log normalization	$1+\log \left(f_{t, d}\right)$
double normalization 0.5	$0.5+0.5 \cdot \frac{f_{t, d}}{\max _{\left\{t^{\prime} \in d\right\}} f_{t^{\prime}, d}}$
double normalization K	$K+(1-K) \frac{f_{t, d}}{\max _{\left\{t^{\prime} \in d\right\}} f_{t^{\prime}, d}}$

Inverse document frequency

- The inverse document frequency is a measure of how much information the word provides, that is, whether the term is common or rare across all documents.

$$
\operatorname{idf}(t, D)=\log \frac{N}{|\{d \in D: t \in d\}|}
$$

- N : total number of documents in the corpus $N=|D|$
- $|\{d \in D: t \in d\}|:$ number of documents where the term t appears (i.e., $\mathrm{tf}(t, d) \neq 0$). If the term is not in the corpus, this will lead to a division-by-zero. It is therefore common to adjust the denominator to $1+|\{d \in D: t \in d\}|$.

Note: IDF then is a cross-document normalization, that puts less weight on common terms, and more weight on rare terms.

Different way to define Inverse document frequency

Variants of IDF weight

weighting scheme	IDF weight $\left(n_{t}=\|\{d \in D: t \in d\}\|\right)$
unary	1
inverse document frequency	$\log \frac{N}{n_{t}}$
inverse document frequency smooth	$\log \left(1+\frac{N}{n_{t}}\right)$
inverse document frequency max	$\log \left(1+\frac{\max _{\left\{t^{\prime} \in d\right\}} n_{t^{\prime}}}{n_{t}}\right)$
probabilistic inverse document frequency	$\log \frac{N-n_{t}}{n_{t}}$

How to calculate tf-idf?

Then tf-idf is calculated as

$$
\operatorname{tfidf}(t, d, D)=\operatorname{tf}(t, d) \cdot \operatorname{idf}(t, D)
$$

Recommended TF-IDF weighting schemes

weighting scheme	document term weight	query term weight
1	$f_{t, d} \cdot \log \frac{N}{n_{t}}$	$\left(0.5+0.5 \frac{f_{t, q}}{\max _{t} f_{t, q}}\right) \cdot \log \frac{N}{n_{t}}$
2	$1+\log f_{t, d}$	$\log \left(1+\frac{N}{n_{t}}\right)$
3	$\left(1+\log f_{t, d}\right) \cdot \log \frac{N}{n_{t}}$	$\left(1+\log f_{t, q}\right) \cdot \log \frac{N}{n_{t}}$

What is Non-negative Matrix Factorization?

- Given a non-negative data matrix A .

Cols = Objects

$n \times m$

$n \times k$

Base vectors

Cols = Objects
Means each Element of $\mathrm{W} \geq 0$
$\mathbf{W} \geq 0, \mathbf{H} \geq 0$

- W and H are called non-negative factors .

Example: Topic Modeling based on NMF

Goal: Minimizing the error between A and the approximation WH

$\frac{1}{2}\|\mathbf{A}-\mathbf{W H}\|_{\mathrm{F}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(A_{i j}-(W H)_{i j}\right)^{2}$

- Use EM optimization to refine W and H in order to minimize the objective function.

Non-negative Matrix Factorization Algorithm

- Input: Non-negative data matrix (A), number of basis vectors (k), initial values for factors \mathbf{W} and \mathbf{H} (e.g. random matrices).
- Objective Function: Some measure of reconstruction error between \mathbf{A} and the approximation WH.

| $\substack{\text { Euclidean } \\ \text { Distance } \\ \text { (Lee \& Sung, 1999) }}$ |
| :---: |$\frac{1}{2}\|\mathbf{A}-\mathbf{W H}\|_{\mathrm{F}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(A_{i j}-(W H)_{i j}\right)^{2}$

- Optimisation Process: Local EM-style optimisation to refine \mathbf{W} and \mathbf{H} in order to minimise the objective function.
- Common approach is to iterate between two multiplicative update rules until convergence (Lee \& Seung, 1999).

1. Update H

$$
H_{c j} \leftarrow H_{c j} \frac{(W \mathbf{A})_{c j}}{(W \mathbf{W H})_{c j}}
$$

2. Update W

$$
W_{i c} \leftarrow W_{i c} \frac{(\mathbf{A} H)_{i c}}{(\mathbf{W H} H)_{i c}}
$$

So What?

- NMF: an unsupervised family of algorithms that simultaneously perform dimension reduction and clustering.
- NMF produces a "parts-based" decomposition of the hidden (or latent) relationships in a data matrix.

Applications of Non-negative Matrix Factorization

- Also known as positive matrix factorization (PMF) and nonnegative matrix approximation (NNMA).
- No strong statistical justification or grounding.
- But has been successfully applied in a range of areas:
- Bioinformatics (e.g. clustering gene expression networks).
- Image processing (e.g. face detection).
- Audio processing (e.g. source separation).
- Text analysis (e.g. document clustering).

How to select k?

- As with LDA, the selection of number of topics k is often performed manually. No definitive model selection strategy.
- Various alternatives comparing different models:
- Compare reconstruction errors for different parameters.
- Natural bias towards larger value of k .
- Build a "consensus matrix" from multiple runs for each k, assess presence of block structure (Brunet et al, 2004).
- Examine the stability (i.e. agreement between results) from multiple randomly initialized runs for each value of k.

Variants of Non-negative Matrix Factorization

Different objective functions:

- KL divergence (Sra \& Dhillon, 2005).

More efficient optimization:

- Alternating least squares with projected gradient method for sub-problems (Lin, 2007).
Constraints:
- Enforcing sparseness in outputs (e.g. Liu et al, 2003).
- Incorporation of background information (Semi-NMF)

Different inputs:

- Symmetric matrices - e.g. document-document cosine similarity matrix (Ding \& He, 2005).

Discussion

- Discuss with the students about what are key elements they need to first understand when they are trying to read a research paper.

Work on the board for understanding the power of manifolds with the examples
(Only time permits)

- A sphere can be viewed as a collection of all 2 planes passing through origin.
- One can use a 3-O.N. basis vectors (called a moving frame) to characterize the motions of a 3D-robot (e.g. UAV) and their matrix representation using SO(3), and how one can still take derivatives to find tangent vectors.
- Talk about: the collection of all the distributions form so called "Statistical manifold". So one can define the probability distribution of distributions.

